弹性调节过硫酸盐氧化成单重态氧途径中单铁催化剂高壳配位的来源

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liang Zhang, Kai Cheng, Zhizhi Yang, Ye Zhang, Shiro Kubuki, Paul A. Bingham, Yang-Chun Yong, Bofan Zhang, Xiaoguang Duan
{"title":"弹性调节过硫酸盐氧化成单重态氧途径中单铁催化剂高壳配位的来源","authors":"Liang Zhang,&nbsp;Kai Cheng,&nbsp;Zhizhi Yang,&nbsp;Ye Zhang,&nbsp;Shiro Kubuki,&nbsp;Paul A. Bingham,&nbsp;Yang-Chun Yong,&nbsp;Bofan Zhang,&nbsp;Xiaoguang Duan","doi":"10.1002/adfm.202417441","DOIUrl":null,"url":null,"abstract":"<p>Precise manipulation of coordination structure of single-atom sites and establishment of schematic microenvironment-oxidation pathway relations remain significant challenges in Fenton-like chemistry. Herein, incorporating sulfur heteroatoms into the higher coordination shell of FeN<sub>4</sub> structure (Fe-NSC) exhibited a volcano trend of <i>p</i>-hydroxybenzoic acid oxidation, aligning with the number and positions of sulfur dopant. Specifically, higher shell S coordination with moderate electronegativity and larger atomic radii triggers long-range electronic interactions, which provoke Fe 3d orbital splitting and spin electron rearrangement, resulting in a spin crossover with orbital states d<sub>xy</sub><sup>2</sup> d<sub>yz</sub><sup>1</sup> d<sub>xz</sub><sup>2</sup> d<sub>z</sub><sup>21</sup>. As a result, the partial filling of e<sub>g</sub> and t<sub>2</sub> <sub>g</sub> orbitals and moderate σ/π antibonding states between 3d and 2p atomic states optimized the adsorption–desorption behaviors of the key oxygenated intermediates from peroxymonosulfate activation. Thus, the optimal binding configuration weakens the Fe─O bonding and accelerates PMS dissociation to yield C-S-N<sub>4</sub>Fe-O*, which subsequently couples to form <sup>1</sup>O<sub>2</sub> with nearly 100% selectivity. The Fe-NSC-functionalized membrane exhibited outstanding long-term reusability in a continuous flow reactor which further validated practical application perspective. This study provides insight at both atomic and electronic levels for rational design of spin-polarized catalysts and its functions in fine-tuning oxidation pathways in environmental catalysis.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 12","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202417441","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Origin of Higher Shell Coordination on Single Iron Catalysts for Resilient Modulating Persulfate Oxidation Into Singlet Oxygen Pathway\",\"authors\":\"Liang Zhang,&nbsp;Kai Cheng,&nbsp;Zhizhi Yang,&nbsp;Ye Zhang,&nbsp;Shiro Kubuki,&nbsp;Paul A. Bingham,&nbsp;Yang-Chun Yong,&nbsp;Bofan Zhang,&nbsp;Xiaoguang Duan\",\"doi\":\"10.1002/adfm.202417441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Precise manipulation of coordination structure of single-atom sites and establishment of schematic microenvironment-oxidation pathway relations remain significant challenges in Fenton-like chemistry. Herein, incorporating sulfur heteroatoms into the higher coordination shell of FeN<sub>4</sub> structure (Fe-NSC) exhibited a volcano trend of <i>p</i>-hydroxybenzoic acid oxidation, aligning with the number and positions of sulfur dopant. Specifically, higher shell S coordination with moderate electronegativity and larger atomic radii triggers long-range electronic interactions, which provoke Fe 3d orbital splitting and spin electron rearrangement, resulting in a spin crossover with orbital states d<sub>xy</sub><sup>2</sup> d<sub>yz</sub><sup>1</sup> d<sub>xz</sub><sup>2</sup> d<sub>z</sub><sup>21</sup>. As a result, the partial filling of e<sub>g</sub> and t<sub>2</sub> <sub>g</sub> orbitals and moderate σ/π antibonding states between 3d and 2p atomic states optimized the adsorption–desorption behaviors of the key oxygenated intermediates from peroxymonosulfate activation. Thus, the optimal binding configuration weakens the Fe─O bonding and accelerates PMS dissociation to yield C-S-N<sub>4</sub>Fe-O*, which subsequently couples to form <sup>1</sup>O<sub>2</sub> with nearly 100% selectivity. The Fe-NSC-functionalized membrane exhibited outstanding long-term reusability in a continuous flow reactor which further validated practical application perspective. This study provides insight at both atomic and electronic levels for rational design of spin-polarized catalysts and its functions in fine-tuning oxidation pathways in environmental catalysis.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 12\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202417441\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202417441\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202417441","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单原子位配位结构的精确处理和微环境-氧化途径关系的建立仍然是类芬顿化学的重大挑战。在FeN4结构的高配位层中加入硫杂原子(Fe-NSC)表现出对羟基苯甲酸氧化的火山趋势,与硫掺杂的数量和位置一致。具体而言,具有中等电负性和较大原子半径的高壳层S配位引发了远距离电子相互作用,引起Fe三维轨道分裂和自旋电子重排,导致自旋交叉,轨道态为dxy2 dyz1 dxz2 dz21。结果表明,eg和t2 g轨道的部分填充以及3d和2p原子态之间的适度σ/π反键态优化了过氧化氢活化中关键氧化中间体的吸附-解吸行为。因此,最佳的结合构型削弱了Fe─O键,加速了PMS的解离,生成C-S-N4Fe-O*,随后以接近100%的选择性偶联形成1O2。fe - nsc功能化膜在连续流反应器中表现出良好的长期可重复使用性,进一步验证了实际应用前景。该研究为自旋极化催化剂的合理设计及其在环境催化氧化途径微调中的作用提供了原子和电子水平的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deciphering the Origin of Higher Shell Coordination on Single Iron Catalysts for Resilient Modulating Persulfate Oxidation Into Singlet Oxygen Pathway

Deciphering the Origin of Higher Shell Coordination on Single Iron Catalysts for Resilient Modulating Persulfate Oxidation Into Singlet Oxygen Pathway

Deciphering the Origin of Higher Shell Coordination on Single Iron Catalysts for Resilient Modulating Persulfate Oxidation Into Singlet Oxygen Pathway

Precise manipulation of coordination structure of single-atom sites and establishment of schematic microenvironment-oxidation pathway relations remain significant challenges in Fenton-like chemistry. Herein, incorporating sulfur heteroatoms into the higher coordination shell of FeN4 structure (Fe-NSC) exhibited a volcano trend of p-hydroxybenzoic acid oxidation, aligning with the number and positions of sulfur dopant. Specifically, higher shell S coordination with moderate electronegativity and larger atomic radii triggers long-range electronic interactions, which provoke Fe 3d orbital splitting and spin electron rearrangement, resulting in a spin crossover with orbital states dxy2 dyz1 dxz2 dz21. As a result, the partial filling of eg and t2 g orbitals and moderate σ/π antibonding states between 3d and 2p atomic states optimized the adsorption–desorption behaviors of the key oxygenated intermediates from peroxymonosulfate activation. Thus, the optimal binding configuration weakens the Fe─O bonding and accelerates PMS dissociation to yield C-S-N4Fe-O*, which subsequently couples to form 1O2 with nearly 100% selectivity. The Fe-NSC-functionalized membrane exhibited outstanding long-term reusability in a continuous flow reactor which further validated practical application perspective. This study provides insight at both atomic and electronic levels for rational design of spin-polarized catalysts and its functions in fine-tuning oxidation pathways in environmental catalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信