利用MXene界面工程推进无铅菱形碲热电学研究

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Fang Xu, Bo Liu, Ran Ang
{"title":"利用MXene界面工程推进无铅菱形碲热电学研究","authors":"Fang Xu,&nbsp;Bo Liu,&nbsp;Ran Ang","doi":"10.1002/aenm.202405554","DOIUrl":null,"url":null,"abstract":"<p>Lead-containing GeTe-based thermoelectric (TE) materials exhibit outstanding performance, but the toxicity of lead (Pb) limits their practical applications. Lead-free GeTe-based TE materials present a promising alternative for environmentally sustainable and scalable applications. Here, Bi doping is used to reduce the majority carrier concentration in GeTe, combined with uniform incorporation of nanoscale layered MXene via high-energy ball milling. This approach significantly enhances the structural symmetry of GeTe, while MXene further reduces carrier concentration and improves carrier mobility. Consequently, the Ge<sub>0.93</sub>Bi<sub>0.07</sub>Te-0.6 mass% MXene sample achieves an impressive average power factor of ≈28.40 µW m<sup>−1</sup> K<sup>−2</sup> across 303–603 K. Moreover, point defects, multilayer nanostructures, and grain boundaries reduce thermal conductivity to ≈1.04 W m<sup>−1</sup> K<sup>−1</sup> at 603 K. A maximum <i>ZT</i><sub>max</sub> of ≈2.1 at 603 K, an average <i>ZT</i><sub>avg</sub> of ≈1.1, and a Vickers microhardness of ≈ 236.75 <i>H</i><sub>v</sub> are obtained. In particular, a high power density of ≈1.54 W cm<sup>−2</sup> and a maximum conversion efficiency of ≈7.5% at a temperature difference of 300 K are achieved in a 7-pair TE module. These outcomes represent the highest performance levels for lead-free GeTe-based materials. This work uncovers a straightforward method to enhance the structural symmetry of GeTe-based compounds, providing insights for advancing lead-free TE technologies.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 21","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Thermoelectrics in Lead-Free Rhombohedral GeTe via Interfacial Engineering With MXene\",\"authors\":\"Fang Xu,&nbsp;Bo Liu,&nbsp;Ran Ang\",\"doi\":\"10.1002/aenm.202405554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lead-containing GeTe-based thermoelectric (TE) materials exhibit outstanding performance, but the toxicity of lead (Pb) limits their practical applications. Lead-free GeTe-based TE materials present a promising alternative for environmentally sustainable and scalable applications. Here, Bi doping is used to reduce the majority carrier concentration in GeTe, combined with uniform incorporation of nanoscale layered MXene via high-energy ball milling. This approach significantly enhances the structural symmetry of GeTe, while MXene further reduces carrier concentration and improves carrier mobility. Consequently, the Ge<sub>0.93</sub>Bi<sub>0.07</sub>Te-0.6 mass% MXene sample achieves an impressive average power factor of ≈28.40 µW m<sup>−1</sup> K<sup>−2</sup> across 303–603 K. Moreover, point defects, multilayer nanostructures, and grain boundaries reduce thermal conductivity to ≈1.04 W m<sup>−1</sup> K<sup>−1</sup> at 603 K. A maximum <i>ZT</i><sub>max</sub> of ≈2.1 at 603 K, an average <i>ZT</i><sub>avg</sub> of ≈1.1, and a Vickers microhardness of ≈ 236.75 <i>H</i><sub>v</sub> are obtained. In particular, a high power density of ≈1.54 W cm<sup>−2</sup> and a maximum conversion efficiency of ≈7.5% at a temperature difference of 300 K are achieved in a 7-pair TE module. These outcomes represent the highest performance levels for lead-free GeTe-based materials. This work uncovers a straightforward method to enhance the structural symmetry of GeTe-based compounds, providing insights for advancing lead-free TE technologies.</p>\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"15 21\",\"pages\":\"\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202405554\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202405554","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

含铅gete基热电材料表现出优异的性能,但铅的毒性限制了其实际应用。无铅gete基TE材料为环境可持续和可扩展的应用提供了一个有前途的替代方案。在这里,使用Bi掺杂来降低GeTe中的大多数载流子浓度,并通过高能球磨均匀地掺入纳米级层状MXene。这种方法显著增强了GeTe的结构对称性,而MXene进一步降低了载流子浓度,提高了载流子迁移率。因此,Ge0.93Bi0.07Te-0.6质量% MXene样品在303-603 K范围内获得了令人印象深刻的平均功率因数≈28.40µW m−1 K−2。此外,点缺陷、多层纳米结构和晶界使热导率在603 K时降至≈1.04 W m−1 K−1。在603 K时ZTmax最大≈2.1,ZTavg平均≈1.1,维氏显微硬度≈236.75 Hv。其中,7对TE模块在300k温差下的功率密度可达≈1.54 W cm−2,最大转换效率可达≈7.5%。这些结果代表了无铅gete基材料的最高性能水平。这项工作揭示了一种增强gete基化合物结构对称性的简单方法,为推进无铅TE技术提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing Thermoelectrics in Lead-Free Rhombohedral GeTe via Interfacial Engineering With MXene

Advancing Thermoelectrics in Lead-Free Rhombohedral GeTe via Interfacial Engineering With MXene

Advancing Thermoelectrics in Lead-Free Rhombohedral GeTe via Interfacial Engineering With MXene

Lead-containing GeTe-based thermoelectric (TE) materials exhibit outstanding performance, but the toxicity of lead (Pb) limits their practical applications. Lead-free GeTe-based TE materials present a promising alternative for environmentally sustainable and scalable applications. Here, Bi doping is used to reduce the majority carrier concentration in GeTe, combined with uniform incorporation of nanoscale layered MXene via high-energy ball milling. This approach significantly enhances the structural symmetry of GeTe, while MXene further reduces carrier concentration and improves carrier mobility. Consequently, the Ge0.93Bi0.07Te-0.6 mass% MXene sample achieves an impressive average power factor of ≈28.40 µW m−1 K−2 across 303–603 K. Moreover, point defects, multilayer nanostructures, and grain boundaries reduce thermal conductivity to ≈1.04 W m−1 K−1 at 603 K. A maximum ZTmax of ≈2.1 at 603 K, an average ZTavg of ≈1.1, and a Vickers microhardness of ≈ 236.75 Hv are obtained. In particular, a high power density of ≈1.54 W cm−2 and a maximum conversion efficiency of ≈7.5% at a temperature difference of 300 K are achieved in a 7-pair TE module. These outcomes represent the highest performance levels for lead-free GeTe-based materials. This work uncovers a straightforward method to enhance the structural symmetry of GeTe-based compounds, providing insights for advancing lead-free TE technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信