离子伏打自然蒸发诱导的绿色制氢电能收集

IF 17.1 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lianghui Li , Yong Hyun Cho , Won Hyung Lee , Junghyup Han , Seungyeon Yu , Huding Jin , Youn Sang Kim
{"title":"离子伏打自然蒸发诱导的绿色制氢电能收集","authors":"Lianghui Li ,&nbsp;Yong Hyun Cho ,&nbsp;Won Hyung Lee ,&nbsp;Junghyup Han ,&nbsp;Seungyeon Yu ,&nbsp;Huding Jin ,&nbsp;Youn Sang Kim","doi":"10.1016/j.nanoen.2025.110731","DOIUrl":null,"url":null,"abstract":"<div><div>Electrical energy harvesting via natural water motion along the solid surface has emerged as an advanced renewable energy technology. Amidst the pressing energy demands, natural evaporation-induced electrical energy harvesting has proven its effectiveness in bolstering power generation efficiency through various approaches. Despite such academic endeavors, achieving the practical level of continuous electricity generation remains an ongoing challenge. Herein, an ionovoltaic natural evaporation-induced electrical energy harvesting device utilizing a 2D material-based sodium-doped hydrated vanadium pentoxide film (NaV<sub>2</sub>O<sub>5</sub>·nH<sub>2</sub>O, NaVOH) is demonstrated to facilitate water electrolysis with a high-power output. A unit NaVOH device (1 <span><math><mi>cm</mi></math></span> × 2 <span><math><mi>cm</mi></math></span> × 100 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>) generates a remarkable continuous open-circuit voltage of ∼1.2 <span><math><mi>V</mi></math></span> and a short-circuit current of ∼100 <span><math><mrow><mi>μ</mi><mi>A</mi></mrow></math></span>. By arranging multiple devices in series and parallel, voltage and current are successfully amplified to generate green hydrogen, a process demanding substantial power, thereby marking a notable remark in the field of water motion-induced energy harvesting.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"136 ","pages":"Article 110731"},"PeriodicalIF":17.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionovoltaic natural evaporation-induced electrical energy harvesting for green hydrogen generation\",\"authors\":\"Lianghui Li ,&nbsp;Yong Hyun Cho ,&nbsp;Won Hyung Lee ,&nbsp;Junghyup Han ,&nbsp;Seungyeon Yu ,&nbsp;Huding Jin ,&nbsp;Youn Sang Kim\",\"doi\":\"10.1016/j.nanoen.2025.110731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrical energy harvesting via natural water motion along the solid surface has emerged as an advanced renewable energy technology. Amidst the pressing energy demands, natural evaporation-induced electrical energy harvesting has proven its effectiveness in bolstering power generation efficiency through various approaches. Despite such academic endeavors, achieving the practical level of continuous electricity generation remains an ongoing challenge. Herein, an ionovoltaic natural evaporation-induced electrical energy harvesting device utilizing a 2D material-based sodium-doped hydrated vanadium pentoxide film (NaV<sub>2</sub>O<sub>5</sub>·nH<sub>2</sub>O, NaVOH) is demonstrated to facilitate water electrolysis with a high-power output. A unit NaVOH device (1 <span><math><mi>cm</mi></math></span> × 2 <span><math><mi>cm</mi></math></span> × 100 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>) generates a remarkable continuous open-circuit voltage of ∼1.2 <span><math><mi>V</mi></math></span> and a short-circuit current of ∼100 <span><math><mrow><mi>μ</mi><mi>A</mi></mrow></math></span>. By arranging multiple devices in series and parallel, voltage and current are successfully amplified to generate green hydrogen, a process demanding substantial power, thereby marking a notable remark in the field of water motion-induced energy harvesting.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"136 \",\"pages\":\"Article 110731\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285525000904\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525000904","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用固体表面的自然水运动来收集电能已经成为一种先进的可再生能源技术。在迫切的能源需求下,自然蒸发引起的电能收集已经通过各种方法证明了它在提高发电效率方面的有效性。尽管有这样的学术努力,实现连续发电的实际水平仍然是一个持续的挑战。本文展示了一种利用二维材料基钠掺杂水合五氧化钒薄膜(NaV2O5·nH2O, NaVOH)的离子光伏自然蒸发诱导电能收集装置,该装置可促进高功率输出的水电解。单元式NaVOH器件(1cm × 2cm × 100 μm)可产生~1.2 V的连续开路电压和~100 μA的短路电流。通过串联和并联多个装置,成功地放大电压和电流以产生绿色氢气,这一过程需要大量的功率,从而在水运动诱导能量收集领域取得了引人注目的成就。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ionovoltaic natural evaporation-induced electrical energy harvesting for green hydrogen generation

Ionovoltaic natural evaporation-induced electrical energy harvesting for green hydrogen generation
Electrical energy harvesting via natural water motion along the solid surface has emerged as an advanced renewable energy technology. Amidst the pressing energy demands, natural evaporation-induced electrical energy harvesting has proven its effectiveness in bolstering power generation efficiency through various approaches. Despite such academic endeavors, achieving the practical level of continuous electricity generation remains an ongoing challenge. Herein, an ionovoltaic natural evaporation-induced electrical energy harvesting device utilizing a 2D material-based sodium-doped hydrated vanadium pentoxide film (NaV2O5·nH2O, NaVOH) is demonstrated to facilitate water electrolysis with a high-power output. A unit NaVOH device (1 cm × 2 cm × 100 μm) generates a remarkable continuous open-circuit voltage of ∼1.2 V and a short-circuit current of ∼100 μA. By arranging multiple devices in series and parallel, voltage and current are successfully amplified to generate green hydrogen, a process demanding substantial power, thereby marking a notable remark in the field of water motion-induced energy harvesting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信