有限块长毫米波系统的帕累托最优混合波束形成

IF 7.1 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jitendra Singh;Banda Naveen;Suraj Srivastava;Aditya K. Jagannatham;Lajos Hanzo
{"title":"有限块长毫米波系统的帕累托最优混合波束形成","authors":"Jitendra Singh;Banda Naveen;Suraj Srivastava;Aditya K. Jagannatham;Lajos Hanzo","doi":"10.1109/TVT.2025.3534021","DOIUrl":null,"url":null,"abstract":"Short-packet communication (SPC) is essentially synonymous with ultra-reliable low-latency communication (uRLLC), which must meet stringent latency and reliability requirements. However, achieving efficient hybrid beamforming (HBF) in SPC-based millimeter wave (mmWave) systems is challenging due to the constraints of finite block lengths, limited number of radio frequency chains (RFCs), and owing to the complex optimization of transmit precoders (TPCs). In this work, we investigate the achievable rate region of an SPC-based mmWave downlink system. We harness the HBF for finite block lengths low-latency communication, relying on a low number of RFCs. We formulate a Pareto optimization problem for characterizing the achievable rate region, while considering the transmit power, mmWave hardware, and block length constraints. To solve this highly non-convex problem, we propose a bisection search-based block coordinate descent (Bi-BCD) algorithm, in which we optimize the RF TPC, the baseband (BB) TPC, and the block length. Specifically, we jointly optimize the RF and BB TPCs for a fixed block length, which involves both Remanian conjugate gradient (RCG) and second-order cone programming (SOCP) techniques, and then we optimize the block length by the mixed integer programming method. Subsequently, we update the achievable rate via the bisection search method. Finally, we present simulation results and quantify the efficiency of the proposed scheme.","PeriodicalId":13421,"journal":{"name":"IEEE Transactions on Vehicular Technology","volume":"74 6","pages":"9910-9915"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pareto-Optimal Hybrid Beamforming for Finite-Blocklength Millimeter Wave Systems\",\"authors\":\"Jitendra Singh;Banda Naveen;Suraj Srivastava;Aditya K. Jagannatham;Lajos Hanzo\",\"doi\":\"10.1109/TVT.2025.3534021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-packet communication (SPC) is essentially synonymous with ultra-reliable low-latency communication (uRLLC), which must meet stringent latency and reliability requirements. However, achieving efficient hybrid beamforming (HBF) in SPC-based millimeter wave (mmWave) systems is challenging due to the constraints of finite block lengths, limited number of radio frequency chains (RFCs), and owing to the complex optimization of transmit precoders (TPCs). In this work, we investigate the achievable rate region of an SPC-based mmWave downlink system. We harness the HBF for finite block lengths low-latency communication, relying on a low number of RFCs. We formulate a Pareto optimization problem for characterizing the achievable rate region, while considering the transmit power, mmWave hardware, and block length constraints. To solve this highly non-convex problem, we propose a bisection search-based block coordinate descent (Bi-BCD) algorithm, in which we optimize the RF TPC, the baseband (BB) TPC, and the block length. Specifically, we jointly optimize the RF and BB TPCs for a fixed block length, which involves both Remanian conjugate gradient (RCG) and second-order cone programming (SOCP) techniques, and then we optimize the block length by the mixed integer programming method. Subsequently, we update the achievable rate via the bisection search method. Finally, we present simulation results and quantify the efficiency of the proposed scheme.\",\"PeriodicalId\":13421,\"journal\":{\"name\":\"IEEE Transactions on Vehicular Technology\",\"volume\":\"74 6\",\"pages\":\"9910-9915\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Vehicular Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10854905/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Vehicular Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10854905/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

短包通信(SPC)本质上等同于超可靠低延迟通信(uRLLC),必须满足严格的延迟和可靠性要求。然而,在基于spc的毫米波(mmWave)系统中实现高效的混合波束形成(HBF)是具有挑战性的,因为有限的块长度、有限的射频链(rfc)数量以及复杂的传输预编码器(tpc)优化。在这项工作中,我们研究了基于spc的毫米波下行系统的可实现速率区域。我们利用HBF进行有限块长度的低延迟通信,依赖于少量rfc。在考虑发射功率、毫米波硬件和块长度约束的情况下,我们制定了一个Pareto优化问题来表征可实现的速率区域。为了解决这个高度非凸问题,我们提出了一种基于对分搜索的块坐标下降(Bi-BCD)算法,其中我们优化了RF TPC,基带(BB) TPC和块长度。具体地说,我们针对固定的块长度联合优化了RF和BB tpc,该方法涉及到Remanian共轭梯度(RCG)和二阶锥规划(SOCP)技术,然后采用混合整数规划方法优化了块长度。随后,我们通过等分搜索法更新了可达率。最后,我们给出了仿真结果,并量化了该方案的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pareto-Optimal Hybrid Beamforming for Finite-Blocklength Millimeter Wave Systems
Short-packet communication (SPC) is essentially synonymous with ultra-reliable low-latency communication (uRLLC), which must meet stringent latency and reliability requirements. However, achieving efficient hybrid beamforming (HBF) in SPC-based millimeter wave (mmWave) systems is challenging due to the constraints of finite block lengths, limited number of radio frequency chains (RFCs), and owing to the complex optimization of transmit precoders (TPCs). In this work, we investigate the achievable rate region of an SPC-based mmWave downlink system. We harness the HBF for finite block lengths low-latency communication, relying on a low number of RFCs. We formulate a Pareto optimization problem for characterizing the achievable rate region, while considering the transmit power, mmWave hardware, and block length constraints. To solve this highly non-convex problem, we propose a bisection search-based block coordinate descent (Bi-BCD) algorithm, in which we optimize the RF TPC, the baseband (BB) TPC, and the block length. Specifically, we jointly optimize the RF and BB TPCs for a fixed block length, which involves both Remanian conjugate gradient (RCG) and second-order cone programming (SOCP) techniques, and then we optimize the block length by the mixed integer programming method. Subsequently, we update the achievable rate via the bisection search method. Finally, we present simulation results and quantify the efficiency of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
8.80%
发文量
1245
审稿时长
6.3 months
期刊介绍: The scope of the Transactions is threefold (which was approved by the IEEE Periodicals Committee in 1967) and is published on the journal website as follows: Communications: The use of mobile radio on land, sea, and air, including cellular radio, two-way radio, and one-way radio, with applications to dispatch and control vehicles, mobile radiotelephone, radio paging, and status monitoring and reporting. Related areas include spectrum usage, component radio equipment such as cavities and antennas, compute control for radio systems, digital modulation and transmission techniques, mobile radio circuit design, radio propagation for vehicular communications, effects of ignition noise and radio frequency interference, and consideration of the vehicle as part of the radio operating environment. Transportation Systems: The use of electronic technology for the control of ground transportation systems including, but not limited to, traffic aid systems; traffic control systems; automatic vehicle identification, location, and monitoring systems; automated transport systems, with single and multiple vehicle control; and moving walkways or people-movers. Vehicular Electronics: The use of electronic or electrical components and systems for control, propulsion, or auxiliary functions, including but not limited to, electronic controls for engineer, drive train, convenience, safety, and other vehicle systems; sensors, actuators, and microprocessors for onboard use; electronic fuel control systems; vehicle electrical components and systems collision avoidance systems; electromagnetic compatibility in the vehicle environment; and electric vehicles and controls.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信