纳米粘土介导的晶体相工程在生物功能中平衡抗菌性和细胞毒性

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Menghan Yu, Yunyang Liu, Tianqi Liao, Huaming Yang
{"title":"纳米粘土介导的晶体相工程在生物功能中平衡抗菌性和细胞毒性","authors":"Menghan Yu, Yunyang Liu, Tianqi Liao, Huaming Yang","doi":"10.1021/acs.nanolett.4c05691","DOIUrl":null,"url":null,"abstract":"The crystalline phase of metal oxides is a key determinant of the properties and functions of the nanomaterials. Traditional approaches have focused on replicating bulk-phase structures, with limited exploration of phase diversity due to challenges in controlling the crystal morphology. Here, we introduce a nanoclay-mediated strategy for crystal-phase engineering, using talc to modulate the morphology and phase of manganese oxide (MnOx) nanoparticles. This approach enhances the oxidase activity of the MnOx composite (M/T), optimizing the antimicrobial efficacy while minimizing cytotoxicity. M/T-190 demonstrated 99% bactericidal activity against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, coupled with 84% cytocompatibility. Theory calculations suggest that talc modulates the charge distribution and d-band center tuning at the Mn<sub>3</sub>O<sub>4</sub>/MnOOH interface, enhancing oxygen activation. When integrated into gauze, M/T exhibits strong antimicrobial activity, low toxicity, and promotes wound healing in both in vitro and in vivo studies. These findings highlight the potential of natural minerals for crystal-phase engineering in biomedical applications.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"35 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoclay-Mediated Crystal-Phase Engineering in Biofunctions to Balance Antibacteriality and Cytotoxicity\",\"authors\":\"Menghan Yu, Yunyang Liu, Tianqi Liao, Huaming Yang\",\"doi\":\"10.1021/acs.nanolett.4c05691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crystalline phase of metal oxides is a key determinant of the properties and functions of the nanomaterials. Traditional approaches have focused on replicating bulk-phase structures, with limited exploration of phase diversity due to challenges in controlling the crystal morphology. Here, we introduce a nanoclay-mediated strategy for crystal-phase engineering, using talc to modulate the morphology and phase of manganese oxide (MnOx) nanoparticles. This approach enhances the oxidase activity of the MnOx composite (M/T), optimizing the antimicrobial efficacy while minimizing cytotoxicity. M/T-190 demonstrated 99% bactericidal activity against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, coupled with 84% cytocompatibility. Theory calculations suggest that talc modulates the charge distribution and d-band center tuning at the Mn<sub>3</sub>O<sub>4</sub>/MnOOH interface, enhancing oxygen activation. When integrated into gauze, M/T exhibits strong antimicrobial activity, low toxicity, and promotes wound healing in both in vitro and in vivo studies. These findings highlight the potential of natural minerals for crystal-phase engineering in biomedical applications.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c05691\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05691","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属氧化物的结晶相是决定纳米材料性能和功能的关键因素。传统的方法集中在复制体相结构,由于控制晶体形态的挑战,对相多样性的探索有限。在这里,我们介绍了一种纳米粘土介导的晶相工程策略,使用滑石来调节氧化锰(MnOx)纳米颗粒的形态和相。该方法提高了MnOx复合物(M/T)的氧化酶活性,优化了抗菌效果,同时最小化了细胞毒性。M/T-190对大肠杆菌和金黄色葡萄球菌的杀菌活性为99%,细胞相容性为84%。理论计算表明,滑石粉调节了Mn3O4/MnOOH界面的电荷分布和d波段中心调谐,增强了氧的活化。在体外和体内研究中,与纱布结合后,M/T显示出强大的抗菌活性,低毒性,并促进伤口愈合。这些发现突出了天然矿物在生物医学中晶体工程应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoclay-Mediated Crystal-Phase Engineering in Biofunctions to Balance Antibacteriality and Cytotoxicity

Nanoclay-Mediated Crystal-Phase Engineering in Biofunctions to Balance Antibacteriality and Cytotoxicity
The crystalline phase of metal oxides is a key determinant of the properties and functions of the nanomaterials. Traditional approaches have focused on replicating bulk-phase structures, with limited exploration of phase diversity due to challenges in controlling the crystal morphology. Here, we introduce a nanoclay-mediated strategy for crystal-phase engineering, using talc to modulate the morphology and phase of manganese oxide (MnOx) nanoparticles. This approach enhances the oxidase activity of the MnOx composite (M/T), optimizing the antimicrobial efficacy while minimizing cytotoxicity. M/T-190 demonstrated 99% bactericidal activity against Escherichia coli and Staphylococcus aureus, coupled with 84% cytocompatibility. Theory calculations suggest that talc modulates the charge distribution and d-band center tuning at the Mn3O4/MnOOH interface, enhancing oxygen activation. When integrated into gauze, M/T exhibits strong antimicrobial activity, low toxicity, and promotes wound healing in both in vitro and in vivo studies. These findings highlight the potential of natural minerals for crystal-phase engineering in biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信