基于等离激元原子腔的单片多参数太赫兹纳米/微探测器

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huanjun Chen, Ximiao Wang, Shaojing Liu, Zhaolong Cao, Jinyang Li, Hongjia Zhu, Shangdong Li, Ningsheng Xu, Shaozhi Deng
{"title":"基于等离激元原子腔的单片多参数太赫兹纳米/微探测器","authors":"Huanjun Chen,&nbsp;Ximiao Wang,&nbsp;Shaojing Liu,&nbsp;Zhaolong Cao,&nbsp;Jinyang Li,&nbsp;Hongjia Zhu,&nbsp;Shangdong Li,&nbsp;Ningsheng Xu,&nbsp;Shaozhi Deng","doi":"10.1002/adma.202410946","DOIUrl":null,"url":null,"abstract":"<p>Terahertz (THz) signals are crucial for ultrawideband communication and high-resolution radar, demanding miniaturized detectors that can simultaneously measure multiple parameters such as intensity, frequency, polarization, and phase. Traditional detectors fail to meet these needs. To address this, we introduce a plasmon polariton atomic cavity (PPAC) detector based on monolayer graphene, offering a multifunctional, monolithic, and miniaturized solution. With a footprint only one-tenth the size of the incoming wavelength, the PPAC achieves benchmark performance in intensity-, frequency-, and polarization-sensitive detection. Operating at room temperature across 0.22–4.24 THz, it delivers sub-diffraction detection resolution and high-speed operation. Furthermore, we demonstrate its application in free-space THz polarization-coded communication and stealth imaging for physical property analysis. The unique design of PPAC enables strong absorption with weak signal detection, within a structure just 10<sup>−5</sup> times the excitation wavelength in thickness, an accomplishment beyond current technologies. By simultaneously resolving intensity, frequency, and polarization, this detector can replace multiple single-function devices, providing a compact and efficient solution for next-generation ultrawideband communication and high-resolution radar systems.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 11","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monolithic Multiparameter Terahertz Nano/Microdetector Based on Plasmon Polariton Atomic Cavity\",\"authors\":\"Huanjun Chen,&nbsp;Ximiao Wang,&nbsp;Shaojing Liu,&nbsp;Zhaolong Cao,&nbsp;Jinyang Li,&nbsp;Hongjia Zhu,&nbsp;Shangdong Li,&nbsp;Ningsheng Xu,&nbsp;Shaozhi Deng\",\"doi\":\"10.1002/adma.202410946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Terahertz (THz) signals are crucial for ultrawideband communication and high-resolution radar, demanding miniaturized detectors that can simultaneously measure multiple parameters such as intensity, frequency, polarization, and phase. Traditional detectors fail to meet these needs. To address this, we introduce a plasmon polariton atomic cavity (PPAC) detector based on monolayer graphene, offering a multifunctional, monolithic, and miniaturized solution. With a footprint only one-tenth the size of the incoming wavelength, the PPAC achieves benchmark performance in intensity-, frequency-, and polarization-sensitive detection. Operating at room temperature across 0.22–4.24 THz, it delivers sub-diffraction detection resolution and high-speed operation. Furthermore, we demonstrate its application in free-space THz polarization-coded communication and stealth imaging for physical property analysis. The unique design of PPAC enables strong absorption with weak signal detection, within a structure just 10<sup>−5</sup> times the excitation wavelength in thickness, an accomplishment beyond current technologies. By simultaneously resolving intensity, frequency, and polarization, this detector can replace multiple single-function devices, providing a compact and efficient solution for next-generation ultrawideband communication and high-resolution radar systems.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 11\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202410946\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202410946","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太赫兹(THz)信号对于超宽带通信和高分辨率雷达至关重要,这要求小型化的探测器能够同时测量多个参数,如强度、频率、极化和相位。传统的检测器无法满足这些需求。为了解决这个问题,我们介绍了一种基于单层石墨烯的等离子激元极化子原子腔(PPAC)探测器,提供了一种多功能、单片和小型化的解决方案。由于PPAC仅占入射波长的十分之一,因此在强度、频率和偏振敏感检测方面达到了基准性能。在0.22-4.24太赫兹的室温下工作,它提供亚衍射检测分辨率和高速操作。此外,我们还演示了它在自由空间太赫兹偏振编码通信和物理特性分析的隐身成像中的应用。PPAC的独特设计使强吸收和弱信号检测在厚度仅为激发波长10 - 5倍的结构内实现,这一成就超越了当前技术。通过同时分辨强度、频率和偏振,该探测器可以取代多个单一功能的设备,为下一代超宽带通信和高分辨率雷达系统提供一个紧凑而高效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monolithic Multiparameter Terahertz Nano/Microdetector Based on Plasmon Polariton Atomic Cavity

Monolithic Multiparameter Terahertz Nano/Microdetector Based on Plasmon Polariton Atomic Cavity

Monolithic Multiparameter Terahertz Nano/Microdetector Based on Plasmon Polariton Atomic Cavity

Monolithic Multiparameter Terahertz Nano/Microdetector Based on Plasmon Polariton Atomic Cavity

Monolithic Multiparameter Terahertz Nano/Microdetector Based on Plasmon Polariton Atomic Cavity

Terahertz (THz) signals are crucial for ultrawideband communication and high-resolution radar, demanding miniaturized detectors that can simultaneously measure multiple parameters such as intensity, frequency, polarization, and phase. Traditional detectors fail to meet these needs. To address this, we introduce a plasmon polariton atomic cavity (PPAC) detector based on monolayer graphene, offering a multifunctional, monolithic, and miniaturized solution. With a footprint only one-tenth the size of the incoming wavelength, the PPAC achieves benchmark performance in intensity-, frequency-, and polarization-sensitive detection. Operating at room temperature across 0.22–4.24 THz, it delivers sub-diffraction detection resolution and high-speed operation. Furthermore, we demonstrate its application in free-space THz polarization-coded communication and stealth imaging for physical property analysis. The unique design of PPAC enables strong absorption with weak signal detection, within a structure just 10−5 times the excitation wavelength in thickness, an accomplishment beyond current technologies. By simultaneously resolving intensity, frequency, and polarization, this detector can replace multiple single-function devices, providing a compact and efficient solution for next-generation ultrawideband communication and high-resolution radar systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信