基于神经网络的空气静电放电可校正电弧模型

IF 2 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yang Jiang;Richard Xian-Ke Gao;Yew Choon Tan;Yew Seng Goh;Mui Mui Goh;Hui Min Lee;Zaifeng Yang;Srien Sithara Syed Nasser
{"title":"基于神经网络的空气静电放电可校正电弧模型","authors":"Yang Jiang;Richard Xian-Ke Gao;Yew Choon Tan;Yew Seng Goh;Mui Mui Goh;Hui Min Lee;Zaifeng Yang;Srien Sithara Syed Nasser","doi":"10.1109/TEMC.2025.3526942","DOIUrl":null,"url":null,"abstract":"This article introduces an innovative calibratable modeling approach to effectively capture intricate arc behavior in air electrostatic discharge (ESD). The proposed method incorporates a compact electric arc resistance model rooted in the Rompe–Weizel law, calibrating by a physics informed neural network (PINN). The systematic uncertainties in the air discharge behavior due to environmental factors and measurement procedure are succinctly and effectively quantified through introducing an equivalent arc length in the compact model. A dedicated electrostatic air discharge behavior library is developed by a reduced-order partial element equivalent circuit model for training the neural network. The PINN calibrates the arc model according to the measured discharge currents on a standard ESD calibration set. The fidelity of the calibrated compact electric arc model is verified by the simulation and measurement. The efficacy of the proposed approach is observed through a case study. This new environment-aware modeling method provides deeper insights into air discharge phenomena and proves its promising potential in characterizing noncontact electromagnetic discharge.","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"67 2","pages":"392-402"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Neural Network Based Calibratable Arc Model for Air Electrostatic Discharge\",\"authors\":\"Yang Jiang;Richard Xian-Ke Gao;Yew Choon Tan;Yew Seng Goh;Mui Mui Goh;Hui Min Lee;Zaifeng Yang;Srien Sithara Syed Nasser\",\"doi\":\"10.1109/TEMC.2025.3526942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces an innovative calibratable modeling approach to effectively capture intricate arc behavior in air electrostatic discharge (ESD). The proposed method incorporates a compact electric arc resistance model rooted in the Rompe–Weizel law, calibrating by a physics informed neural network (PINN). The systematic uncertainties in the air discharge behavior due to environmental factors and measurement procedure are succinctly and effectively quantified through introducing an equivalent arc length in the compact model. A dedicated electrostatic air discharge behavior library is developed by a reduced-order partial element equivalent circuit model for training the neural network. The PINN calibrates the arc model according to the measured discharge currents on a standard ESD calibration set. The fidelity of the calibrated compact electric arc model is verified by the simulation and measurement. The efficacy of the proposed approach is observed through a case study. This new environment-aware modeling method provides deeper insights into air discharge phenomena and proves its promising potential in characterizing noncontact electromagnetic discharge.\",\"PeriodicalId\":55012,\"journal\":{\"name\":\"IEEE Transactions on Electromagnetic Compatibility\",\"volume\":\"67 2\",\"pages\":\"392-402\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electromagnetic Compatibility\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10855003/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electromagnetic Compatibility","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10855003/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种创新的可校准建模方法,以有效地捕捉空气静电放电(ESD)中复杂的电弧行为。该方法结合了基于Rompe-Weizel定律的紧凑电弧电阻模型,并通过物理信息神经网络(PINN)进行校准。通过在紧凑模型中引入等效弧长,简明有效地量化了由于环境因素和测量过程引起的系统排气行为不确定性。采用降阶部分单元等效电路模型建立了专用的静电空气放电行为库,用于神经网络的训练。PINN根据标准ESD校准集上测量的放电电流校准电弧模型。通过仿真和测量验证了校正后的紧凑电弧模型的保真度。通过一个案例研究,观察了该方法的有效性。这种新的环境感知建模方法对空气放电现象提供了更深入的了解,并证明了其在表征非接触电磁放电方面的良好潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Neural Network Based Calibratable Arc Model for Air Electrostatic Discharge
This article introduces an innovative calibratable modeling approach to effectively capture intricate arc behavior in air electrostatic discharge (ESD). The proposed method incorporates a compact electric arc resistance model rooted in the Rompe–Weizel law, calibrating by a physics informed neural network (PINN). The systematic uncertainties in the air discharge behavior due to environmental factors and measurement procedure are succinctly and effectively quantified through introducing an equivalent arc length in the compact model. A dedicated electrostatic air discharge behavior library is developed by a reduced-order partial element equivalent circuit model for training the neural network. The PINN calibrates the arc model according to the measured discharge currents on a standard ESD calibration set. The fidelity of the calibrated compact electric arc model is verified by the simulation and measurement. The efficacy of the proposed approach is observed through a case study. This new environment-aware modeling method provides deeper insights into air discharge phenomena and proves its promising potential in characterizing noncontact electromagnetic discharge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
19.00%
发文量
235
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Electromagnetic Compatibility publishes original and significant contributions related to all disciplines of electromagnetic compatibility (EMC) and relevant methods to predict, assess and prevent electromagnetic interference (EMI) and increase device/product immunity. The scope of the publication includes, but is not limited to Electromagnetic Environments; Interference Control; EMC and EMI Modeling; High Power Electromagnetics; EMC Standards, Methods of EMC Measurements; Computational Electromagnetics and Signal and Power Integrity, as applied or directly related to Electromagnetic Compatibility problems; Transmission Lines; Electrostatic Discharge and Lightning Effects; EMC in Wireless and Optical Technologies; EMC in Printed Circuit Board and System Design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信