强子-夸克混合模型,模变换,和Roberge-Weiss跃迁

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Hiroaki Kouno, Riki Oshima, Motoi Tachibana, Kouji Kashiwa
{"title":"强子-夸克混合模型,模变换,和Roberge-Weiss跃迁","authors":"Hiroaki Kouno, Riki Oshima, Motoi Tachibana, Kouji Kashiwa","doi":"10.1103/physrevd.111.014026","DOIUrl":null,"url":null,"abstract":"In the framework of modular transformations, we reformulate the recently proposed hadron-quark hybrid model when the imaginary baryonic chemical potential is introduced. In this case, the number density of the hybrid model is obtained by the modular transformation of the complex number densities of the baryons (antibaryons) and the quarks (antiquarks). We can regard these number densities as the basis in the complex plane. As a result, we can consider the torus, which is characterized by the basis. Since the complex structure of the torus is invariant under the modular transformation, we can extract the topological property of the hadron-quark system using the untransformed baryon (antibaryon) and the quark (antiquark) number densities. We apply this model to analyze the Roberge-Weiss transition. It is shown that the torus vanishes at the baryonic chemical potential where the Roberge-Weiss transition appears because the number density of baryons (antibaryons) is not linearly independent of the number density of quarks (antiquarks). When the temperature T</a:mi></a:math> is lower than the Roberge-Weiss transition temperature <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>T</c:mi><c:mrow><c:mi>RW</c:mi></c:mrow></c:msub></c:math>, the torus shrinks smoothly to the one-dimensional object at the Roberge-Weiss transition point, but the discontinuity does not appear. On the other hand, the discontinuity of the geometrical object appears when <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>T</e:mi><e:mo>&gt;</e:mo><e:msub><e:mi>T</e:mi><e:mrow><e:mi>RW</e:mi></e:mrow></e:msub></e:math>. We also calculate the modulus of the torus and transform it into the fundamental region. The transformed moduli are symmetric below <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi>T</g:mi><g:mrow><g:mi>RW</g:mi></g:mrow></g:msub></g:math>, but the symmetry is broken above <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>T</i:mi><i:mrow><i:mi>RW</i:mi></i:mrow></i:msub></i:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"17 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hadron-quark hybrid model, modular transformation, and Roberge-Weiss transition\",\"authors\":\"Hiroaki Kouno, Riki Oshima, Motoi Tachibana, Kouji Kashiwa\",\"doi\":\"10.1103/physrevd.111.014026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of modular transformations, we reformulate the recently proposed hadron-quark hybrid model when the imaginary baryonic chemical potential is introduced. In this case, the number density of the hybrid model is obtained by the modular transformation of the complex number densities of the baryons (antibaryons) and the quarks (antiquarks). We can regard these number densities as the basis in the complex plane. As a result, we can consider the torus, which is characterized by the basis. Since the complex structure of the torus is invariant under the modular transformation, we can extract the topological property of the hadron-quark system using the untransformed baryon (antibaryon) and the quark (antiquark) number densities. We apply this model to analyze the Roberge-Weiss transition. It is shown that the torus vanishes at the baryonic chemical potential where the Roberge-Weiss transition appears because the number density of baryons (antibaryons) is not linearly independent of the number density of quarks (antiquarks). When the temperature T</a:mi></a:math> is lower than the Roberge-Weiss transition temperature <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>T</c:mi><c:mrow><c:mi>RW</c:mi></c:mrow></c:msub></c:math>, the torus shrinks smoothly to the one-dimensional object at the Roberge-Weiss transition point, but the discontinuity does not appear. On the other hand, the discontinuity of the geometrical object appears when <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mi>T</e:mi><e:mo>&gt;</e:mo><e:msub><e:mi>T</e:mi><e:mrow><e:mi>RW</e:mi></e:mrow></e:msub></e:math>. We also calculate the modulus of the torus and transform it into the fundamental region. The transformed moduli are symmetric below <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:msub><g:mi>T</g:mi><g:mrow><g:mi>RW</g:mi></g:mrow></g:msub></g:math>, but the symmetry is broken above <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msub><i:mi>T</i:mi><i:mrow><i:mi>RW</i:mi></i:mrow></i:msub></i:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.014026\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.014026","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在模变换的框架下,当引入假想重子化学势时,我们重新表述了最近提出的强子-夸克杂化模型。在这种情况下,混合模型的数密度由重子(反重子)和夸克(反夸克)的复数密度的模变换得到。我们可以把这些数字密度作为复平面中的基。因此,我们可以考虑环面,它的特征是基。由于环面的复杂结构在模变换下是不变的,我们可以利用未变换的重子(反重子)和夸克(反夸克)数密度提取强子-夸克系统的拓扑性质。我们应用这个模型来分析Roberge-Weiss转换。由于重子(反重子)的数量密度与夸克(反夸克)的数量密度不是线性无关的,因此环面在重子化学势出现的地方消失。当温度T低于Roberge-Weiss转变温度TRW时,环面在Roberge-Weiss转变点平滑收缩为一维物体,但不出现不连续现象。另一方面,当T>;TRW时,几何对象出现不连续。我们还计算了环面的模量,并将其转化为基本区域。变换模在TRW以下是对称的,但在TRW以上对称性被打破。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hadron-quark hybrid model, modular transformation, and Roberge-Weiss transition
In the framework of modular transformations, we reformulate the recently proposed hadron-quark hybrid model when the imaginary baryonic chemical potential is introduced. In this case, the number density of the hybrid model is obtained by the modular transformation of the complex number densities of the baryons (antibaryons) and the quarks (antiquarks). We can regard these number densities as the basis in the complex plane. As a result, we can consider the torus, which is characterized by the basis. Since the complex structure of the torus is invariant under the modular transformation, we can extract the topological property of the hadron-quark system using the untransformed baryon (antibaryon) and the quark (antiquark) number densities. We apply this model to analyze the Roberge-Weiss transition. It is shown that the torus vanishes at the baryonic chemical potential where the Roberge-Weiss transition appears because the number density of baryons (antibaryons) is not linearly independent of the number density of quarks (antiquarks). When the temperature T is lower than the Roberge-Weiss transition temperature TRW, the torus shrinks smoothly to the one-dimensional object at the Roberge-Weiss transition point, but the discontinuity does not appear. On the other hand, the discontinuity of the geometrical object appears when T>TRW. We also calculate the modulus of the torus and transform it into the fundamental region. The transformed moduli are symmetric below TRW, but the symmetry is broken above TRW. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信