对不同祖先群体的罕见变异分析揭示了新的多动症风险基因。

Seulgi Jung, Madison Caballero, Emily Olfson, Jeffrey H Newcorn, Thomas V Fernandez, Behrang Mahjani
{"title":"对不同祖先群体的罕见变异分析揭示了新的多动症风险基因。","authors":"Seulgi Jung, Madison Caballero, Emily Olfson, Jeffrey H Newcorn, Thomas V Fernandez, Behrang Mahjani","doi":"10.1101/2025.01.14.25320294","DOIUrl":null,"url":null,"abstract":"<p><p>Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder, but its genetic architecture remains incompletely characterized. Rare coding variants, which can profoundly impact gene function, represent an underexplored dimension of ADHD risk. In this study, we analyzed large-scale DNA sequencing datasets from ancestrally diverse cohorts and observed significant enrichment of rare protein-truncating and deleterious missense variants in highly evolutionarily constrained genes. This analysis identified 15 high-confidence ADHD risk genes, including the previously implicated <i>KDM5B</i>. Integrating these findings with genome-wide association study (GWAS) data revealed nine enriched pathways, with strong involvement in synapse organization, neuronal development, and chromatin regulation. Protein-protein interaction analyses identified chromatin regulators as central network hubs, and single-cell transcriptomic profiling confirmed their expression in neurons and glial cells, with distinct patterns in oligodendrocyte subtypes. These findings advance our understanding of the genetic architecture of ADHD, uncover core molecular mechanisms, and provide promising directions for future therapeutic development.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759603/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rare Variant Analyses in Ancestrally Diverse Cohorts Reveal Novel ADHD Risk Genes.\",\"authors\":\"Seulgi Jung, Madison Caballero, Emily Olfson, Jeffrey H Newcorn, Thomas V Fernandez, Behrang Mahjani\",\"doi\":\"10.1101/2025.01.14.25320294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder, but its genetic architecture remains incompletely characterized. Rare coding variants, which can profoundly impact gene function, represent an underexplored dimension of ADHD risk. In this study, we analyzed large-scale DNA sequencing datasets from ancestrally diverse cohorts and observed significant enrichment of rare protein-truncating and deleterious missense variants in highly evolutionarily constrained genes. This analysis identified 15 high-confidence ADHD risk genes, including the previously implicated <i>KDM5B</i>. Integrating these findings with genome-wide association study (GWAS) data revealed nine enriched pathways, with strong involvement in synapse organization, neuronal development, and chromatin regulation. Protein-protein interaction analyses identified chromatin regulators as central network hubs, and single-cell transcriptomic profiling confirmed their expression in neurons and glial cells, with distinct patterns in oligodendrocyte subtypes. These findings advance our understanding of the genetic architecture of ADHD, uncover core molecular mechanisms, and provide promising directions for future therapeutic development.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759603/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.01.14.25320294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.01.14.25320294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rare Variant Analyses in Ancestrally Diverse Cohorts Reveal Novel ADHD Risk Genes.

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder, but its genetic architecture remains incompletely characterized. Rare coding variants, which can profoundly impact gene function, represent an underexplored dimension of ADHD risk. In this study, we analyzed large-scale DNA sequencing datasets from ancestrally diverse cohorts and observed significant enrichment of rare protein-truncating and deleterious missense variants in highly evolutionarily constrained genes. This analysis identified 15 high-confidence ADHD risk genes, including the previously implicated KDM5B. Integrating these findings with genome-wide association study (GWAS) data revealed nine enriched pathways, with strong involvement in synapse organization, neuronal development, and chromatin regulation. Protein-protein interaction analyses identified chromatin regulators as central network hubs, and single-cell transcriptomic profiling confirmed their expression in neurons and glial cells, with distinct patterns in oligodendrocyte subtypes. These findings advance our understanding of the genetic architecture of ADHD, uncover core molecular mechanisms, and provide promising directions for future therapeutic development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信