使用前瞻性代表性数据鉴别细菌性和真菌性角膜炎的多模态深度学习。

IF 3.2 Q1 OPHTHALMOLOGY
N.V. Prajna MD , Jad Assaf MD , Nisha R. Acharya MD, MS , Jennifer Rose-Nussbaumer MD , Thomas M. Lietman MD , J. Peter Campbell MD, MPH , Jeremy D. Keenan MD, MPH , Xubo Song PhD , Travis K. Redd MD, MPH
{"title":"使用前瞻性代表性数据鉴别细菌性和真菌性角膜炎的多模态深度学习。","authors":"N.V. Prajna MD ,&nbsp;Jad Assaf MD ,&nbsp;Nisha R. Acharya MD, MS ,&nbsp;Jennifer Rose-Nussbaumer MD ,&nbsp;Thomas M. Lietman MD ,&nbsp;J. Peter Campbell MD, MPH ,&nbsp;Jeremy D. Keenan MD, MPH ,&nbsp;Xubo Song PhD ,&nbsp;Travis K. Redd MD, MPH","doi":"10.1016/j.xops.2024.100665","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study develops and evaluates multimodal machine learning models for differentiating bacterial and fungal keratitis using a prospective representative dataset from South India.</div></div><div><h3>Design</h3><div>Machine learning classifier training and validation study.</div></div><div><h3>Participants</h3><div>Five hundred ninety-nine subjects diagnosed with acute infectious keratitis at Aravind Eye Hospital in Madurai, India.</div></div><div><h3>Methods</h3><div>We developed and compared 3 prediction models to distinguish bacterial and fungal keratitis using a prospective, consecutively-collected, representative dataset gathered over a full calendar year (the MADURAI dataset). These models included a clinical data model, a computer vision model using the EfficientNet architecture, and a multimodal model combining both imaging and clinical data. We partitioned the MADURAI dataset into 70% train/validation and 30% test sets. Model training was performed with fivefold cross-validation. We also compared the performance of the MADURAI-trained computer vision model against a model with identical architecture but trained on a preexisting dataset collated from multiple prior bacterial and fungal keratitis randomized clinical trials (RCTs) (the RCT-trained computer vision model).</div></div><div><h3>Main Outcome Measures</h3><div>The primary evaluation metric was the area under the precision-recall curve (AUPRC). Secondary metrics included area under the receiver operating characteristic curve (AUROC), accuracy, and F1 score.</div></div><div><h3>Results</h3><div>The MADURAI-trained computer vision model outperformed the clinical data model and the RCT-trained computer vision model on the hold-out test set, with an AUPRC 0.94 (95% confidence interval: 0.92–0.96), AUROC 0.81 (0.76–0.85), accuracy 77%, and F1 score 0.85. The multimodal model did not substantially improve performance compared with the computer vision model.</div></div><div><h3>Conclusions</h3><div>The best-performing machine learning classifier for infectious keratitis was a computer vision model trained using the MADURAI dataset. These findings suggest that image-based deep learning could significantly enhance diagnostic capabilities for infectious keratitis and emphasize the importance of using prospective, consecutively-collected, representative data for machine learning model training and evaluation.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 2","pages":"Article 100665"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758206/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal Deep Learning for Differentiating Bacterial and Fungal Keratitis Using Prospective Representative Data\",\"authors\":\"N.V. Prajna MD ,&nbsp;Jad Assaf MD ,&nbsp;Nisha R. Acharya MD, MS ,&nbsp;Jennifer Rose-Nussbaumer MD ,&nbsp;Thomas M. Lietman MD ,&nbsp;J. Peter Campbell MD, MPH ,&nbsp;Jeremy D. Keenan MD, MPH ,&nbsp;Xubo Song PhD ,&nbsp;Travis K. Redd MD, MPH\",\"doi\":\"10.1016/j.xops.2024.100665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>This study develops and evaluates multimodal machine learning models for differentiating bacterial and fungal keratitis using a prospective representative dataset from South India.</div></div><div><h3>Design</h3><div>Machine learning classifier training and validation study.</div></div><div><h3>Participants</h3><div>Five hundred ninety-nine subjects diagnosed with acute infectious keratitis at Aravind Eye Hospital in Madurai, India.</div></div><div><h3>Methods</h3><div>We developed and compared 3 prediction models to distinguish bacterial and fungal keratitis using a prospective, consecutively-collected, representative dataset gathered over a full calendar year (the MADURAI dataset). These models included a clinical data model, a computer vision model using the EfficientNet architecture, and a multimodal model combining both imaging and clinical data. We partitioned the MADURAI dataset into 70% train/validation and 30% test sets. Model training was performed with fivefold cross-validation. We also compared the performance of the MADURAI-trained computer vision model against a model with identical architecture but trained on a preexisting dataset collated from multiple prior bacterial and fungal keratitis randomized clinical trials (RCTs) (the RCT-trained computer vision model).</div></div><div><h3>Main Outcome Measures</h3><div>The primary evaluation metric was the area under the precision-recall curve (AUPRC). Secondary metrics included area under the receiver operating characteristic curve (AUROC), accuracy, and F1 score.</div></div><div><h3>Results</h3><div>The MADURAI-trained computer vision model outperformed the clinical data model and the RCT-trained computer vision model on the hold-out test set, with an AUPRC 0.94 (95% confidence interval: 0.92–0.96), AUROC 0.81 (0.76–0.85), accuracy 77%, and F1 score 0.85. The multimodal model did not substantially improve performance compared with the computer vision model.</div></div><div><h3>Conclusions</h3><div>The best-performing machine learning classifier for infectious keratitis was a computer vision model trained using the MADURAI dataset. These findings suggest that image-based deep learning could significantly enhance diagnostic capabilities for infectious keratitis and emphasize the importance of using prospective, consecutively-collected, representative data for machine learning model training and evaluation.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>\",\"PeriodicalId\":74363,\"journal\":{\"name\":\"Ophthalmology science\",\"volume\":\"5 2\",\"pages\":\"Article 100665\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758206/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmology science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266691452400201X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266691452400201X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究使用来自南印度的前瞻性代表性数据集开发和评估用于区分细菌性和真菌性角膜炎的多模态机器学习模型。设计:机器学习分类器训练和验证研究。参与者:599名在印度马杜赖Aravind眼科医院诊断为急性感染性角膜炎的受试者。方法:我们开发并比较了3种预测模型来区分细菌性角膜炎和真菌性角膜炎,使用的是一个前瞻性的、连续收集的、有代表性的数据集(MADURAI数据集),该数据集收集了整整一个日历年。这些模型包括一个临床数据模型、一个使用effentnet架构的计算机视觉模型和一个结合了成像和临床数据的多模态模型。我们将MADURAI数据集划分为70%的训练/验证集和30%的测试集。模型训练采用五重交叉验证。我们还比较了madurai训练的计算机视觉模型与具有相同架构的模型的性能,但该模型是在从多个先前的细菌性和真菌性角膜炎随机临床试验(rct)整理的预先存在的数据集上训练的(rct训练的计算机视觉模型)。主要评价指标:主要评价指标为准确度召回曲线下面积(AUPRC)。次要指标包括受试者工作特征曲线下面积(AUROC)、准确性和F1评分。结果:madurai训练的计算机视觉模型在hold-out测试集上优于临床数据模型和rct训练的计算机视觉模型,AUPRC为0.94(95%置信区间:0.92-0.96),AUROC为0.81(0.76-0.85),准确率为77%,F1得分为0.85。与计算机视觉模型相比,多模态模型并没有显著提高性能。结论:传染性角膜炎表现最好的机器学习分类器是使用MADURAI数据集训练的计算机视觉模型。这些发现表明,基于图像的深度学习可以显著增强对感染性角膜炎的诊断能力,并强调了使用前瞻性、连续收集的、有代表性的数据进行机器学习模型训练和评估的重要性。财务披露:专有或商业披露可在本文末尾的脚注和披露中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Deep Learning for Differentiating Bacterial and Fungal Keratitis Using Prospective Representative Data

Objective

This study develops and evaluates multimodal machine learning models for differentiating bacterial and fungal keratitis using a prospective representative dataset from South India.

Design

Machine learning classifier training and validation study.

Participants

Five hundred ninety-nine subjects diagnosed with acute infectious keratitis at Aravind Eye Hospital in Madurai, India.

Methods

We developed and compared 3 prediction models to distinguish bacterial and fungal keratitis using a prospective, consecutively-collected, representative dataset gathered over a full calendar year (the MADURAI dataset). These models included a clinical data model, a computer vision model using the EfficientNet architecture, and a multimodal model combining both imaging and clinical data. We partitioned the MADURAI dataset into 70% train/validation and 30% test sets. Model training was performed with fivefold cross-validation. We also compared the performance of the MADURAI-trained computer vision model against a model with identical architecture but trained on a preexisting dataset collated from multiple prior bacterial and fungal keratitis randomized clinical trials (RCTs) (the RCT-trained computer vision model).

Main Outcome Measures

The primary evaluation metric was the area under the precision-recall curve (AUPRC). Secondary metrics included area under the receiver operating characteristic curve (AUROC), accuracy, and F1 score.

Results

The MADURAI-trained computer vision model outperformed the clinical data model and the RCT-trained computer vision model on the hold-out test set, with an AUPRC 0.94 (95% confidence interval: 0.92–0.96), AUROC 0.81 (0.76–0.85), accuracy 77%, and F1 score 0.85. The multimodal model did not substantially improve performance compared with the computer vision model.

Conclusions

The best-performing machine learning classifier for infectious keratitis was a computer vision model trained using the MADURAI dataset. These findings suggest that image-based deep learning could significantly enhance diagnostic capabilities for infectious keratitis and emphasize the importance of using prospective, consecutively-collected, representative data for machine learning model training and evaluation.

Financial Disclosure(s)

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ophthalmology science
Ophthalmology science Ophthalmology
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
89 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信