Twinfilin调控肌动蛋白动力学。

IF 6 2区 生物学 Q1 CELL BIOLOGY
Heidi Ulrichs, Shashank Shekhar
{"title":"Twinfilin调控肌动蛋白动力学。","authors":"Heidi Ulrichs,&nbsp;Shashank Shekhar","doi":"10.1016/j.ceb.2024.102459","DOIUrl":null,"url":null,"abstract":"<div><div>Twinfilin is an evolutionarily conserved actin-binding protein initially mischaracterized as a tyrosine kinase but later recognized as a key regulator of cellular actin dynamics. As a member of the ADF-H family, twinfilin binds both actin monomers and filaments. Its role in sequestering G-actin is well-established, but its effects on actin filaments have been debated. While early studies suggested twinfilin caps filament barbed ends, later research demonstrated its role in nucleotide-specific barbed-end depolymerization. Further, it was initially thought to be a processive depolymerase. Recent structural and single-molecule studies have however challenged this view, indicating that twinfilin binding events result in the removal of only one or two actin subunits from the barbed end. Additionally, twinfilin directly binds capping protein (CP) and facilitates uncapping of CP-bound barbed ends. Here, we summarize twinfilin's cellular and tissue-specific localization, and examine its evolving role in regulating cellular actin dynamics in light of its known biochemical functions.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"92 ","pages":"Article 102459"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of actin dynamics by Twinfilin\",\"authors\":\"Heidi Ulrichs,&nbsp;Shashank Shekhar\",\"doi\":\"10.1016/j.ceb.2024.102459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Twinfilin is an evolutionarily conserved actin-binding protein initially mischaracterized as a tyrosine kinase but later recognized as a key regulator of cellular actin dynamics. As a member of the ADF-H family, twinfilin binds both actin monomers and filaments. Its role in sequestering G-actin is well-established, but its effects on actin filaments have been debated. While early studies suggested twinfilin caps filament barbed ends, later research demonstrated its role in nucleotide-specific barbed-end depolymerization. Further, it was initially thought to be a processive depolymerase. Recent structural and single-molecule studies have however challenged this view, indicating that twinfilin binding events result in the removal of only one or two actin subunits from the barbed end. Additionally, twinfilin directly binds capping protein (CP) and facilitates uncapping of CP-bound barbed ends. Here, we summarize twinfilin's cellular and tissue-specific localization, and examine its evolving role in regulating cellular actin dynamics in light of its known biochemical functions.</div></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":\"92 \",\"pages\":\"Article 102459\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067424001388\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424001388","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Twinfilin是一种进化上保守的肌动蛋白结合蛋白,最初被误认为是酪氨酸激酶,但后来被认为是细胞肌动蛋白动力学的关键调节剂。作为ADF-H家族的成员,twinfilin结合肌动蛋白单体和细丝。它在隔离g -肌动蛋白中的作用是公认的,但它对肌动蛋白丝的影响一直存在争议。虽然早期的研究表明双filin帽丝倒钩端,后来的研究证明了它在核苷酸特异性倒钩端解聚中的作用。此外,它最初被认为是一种过程解聚合酶。然而,最近的结构和单分子研究挑战了这一观点,表明双filin结合事件只导致从倒刺端去除一个或两个肌动蛋白亚基。此外,twinfilin直接结合capping蛋白(CP)并促进CP结合的倒刺末端的脱帽。在这里,我们总结了twinfilin的细胞和组织特异性定位,并根据其已知的生化功能检查其在调节细胞肌动蛋白动力学中的进化作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulation of actin dynamics by Twinfilin
Twinfilin is an evolutionarily conserved actin-binding protein initially mischaracterized as a tyrosine kinase but later recognized as a key regulator of cellular actin dynamics. As a member of the ADF-H family, twinfilin binds both actin monomers and filaments. Its role in sequestering G-actin is well-established, but its effects on actin filaments have been debated. While early studies suggested twinfilin caps filament barbed ends, later research demonstrated its role in nucleotide-specific barbed-end depolymerization. Further, it was initially thought to be a processive depolymerase. Recent structural and single-molecule studies have however challenged this view, indicating that twinfilin binding events result in the removal of only one or two actin subunits from the barbed end. Additionally, twinfilin directly binds capping protein (CP) and facilitates uncapping of CP-bound barbed ends. Here, we summarize twinfilin's cellular and tissue-specific localization, and examine its evolving role in regulating cellular actin dynamics in light of its known biochemical functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信