材料的未来是无定形的吗?非晶材料模拟的挑战与机遇。

IF 3.7 Q2 CHEMISTRY, PHYSICAL
ACS Physical Chemistry Au Pub Date : 2024-12-31 eCollection Date: 2025-01-22 DOI:10.1021/acsphyschemau.4c00063
Ata Madanchi, Emna Azek, Karim Zongo, Laurent K Béland, Normand Mousseau, Lena Simine
{"title":"材料的未来是无定形的吗?非晶材料模拟的挑战与机遇。","authors":"Ata Madanchi, Emna Azek, Karim Zongo, Laurent K Béland, Normand Mousseau, Lena Simine","doi":"10.1021/acsphyschemau.4c00063","DOIUrl":null,"url":null,"abstract":"<p><p>Amorphous solids form an enormous and underutilized class of materials. In order to drive the discovery of new useful amorphous materials further we need to achieve a closer convergence between computational and experimental methods. In this review, we highlight some of the important gaps between computational simulations and experiments, discuss popular state-of-the-art computational techniques such as the Activation Relaxation Technique <i>nouveau</i> (ARTn) and Reverse Monte Carlo (RMC), and introduce more recent advances: machine learning interatomic potentials (MLIPs) and generative machine learning for simulations of amorphous matter (e.g., MAP). Examples are drawn from amorphous silicon and silica literature as well as from molecular glasses. Our outlook stresses the need for new computational methods to extend the time- and length-scales accessible through numerical simulations.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 1","pages":"3-16"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758375/pdf/","citationCount":"0","resultStr":"{\"title\":\"Is the Future of Materials Amorphous? Challenges and Opportunities in Simulations of Amorphous Materials.\",\"authors\":\"Ata Madanchi, Emna Azek, Karim Zongo, Laurent K Béland, Normand Mousseau, Lena Simine\",\"doi\":\"10.1021/acsphyschemau.4c00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amorphous solids form an enormous and underutilized class of materials. In order to drive the discovery of new useful amorphous materials further we need to achieve a closer convergence between computational and experimental methods. In this review, we highlight some of the important gaps between computational simulations and experiments, discuss popular state-of-the-art computational techniques such as the Activation Relaxation Technique <i>nouveau</i> (ARTn) and Reverse Monte Carlo (RMC), and introduce more recent advances: machine learning interatomic potentials (MLIPs) and generative machine learning for simulations of amorphous matter (e.g., MAP). Examples are drawn from amorphous silicon and silica literature as well as from molecular glasses. Our outlook stresses the need for new computational methods to extend the time- and length-scales accessible through numerical simulations.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":\"5 1\",\"pages\":\"3-16\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758375/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphyschemau.4c00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/22 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.4c00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

无定形固体是一种巨大的未被充分利用的材料。为了进一步推动发现新的有用的非晶材料,我们需要在计算和实验方法之间实现更紧密的融合。在这篇综述中,我们强调了计算模拟和实验之间的一些重要差距,讨论了流行的最先进的计算技术,如新激活松弛技术(ARTn)和反向蒙特卡罗(RMC),并介绍了更多的最新进展:机器学习原子间势(MLIPs)和非晶态物质模拟的生成机器学习(例如MAP)。例子取自非晶硅和二氧化硅文献以及分子玻璃。我们的展望强调需要新的计算方法来延长可通过数值模拟获得的时间和长度尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is the Future of Materials Amorphous? Challenges and Opportunities in Simulations of Amorphous Materials.

Amorphous solids form an enormous and underutilized class of materials. In order to drive the discovery of new useful amorphous materials further we need to achieve a closer convergence between computational and experimental methods. In this review, we highlight some of the important gaps between computational simulations and experiments, discuss popular state-of-the-art computational techniques such as the Activation Relaxation Technique nouveau (ARTn) and Reverse Monte Carlo (RMC), and introduce more recent advances: machine learning interatomic potentials (MLIPs) and generative machine learning for simulations of amorphous matter (e.g., MAP). Examples are drawn from amorphous silicon and silica literature as well as from molecular glasses. Our outlook stresses the need for new computational methods to extend the time- and length-scales accessible through numerical simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信