基于MODIS和Landsat数据融合的中国植被指数长期重建数据集。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiangqian Li, Qiongyan Peng, Ruoque Shen, Wenfang Xu, Zhangcai Qin, Shangrong Lin, Si Ha, Dongdong Kong, Wenping Yuan
{"title":"基于MODIS和Landsat数据融合的中国植被指数长期重建数据集。","authors":"Xiangqian Li, Qiongyan Peng, Ruoque Shen, Wenfang Xu, Zhangcai Qin, Shangrong Lin, Si Ha, Dongdong Kong, Wenping Yuan","doi":"10.1038/s41597-025-04497-9","DOIUrl":null,"url":null,"abstract":"<p><p>The vegetation index is a key satellite-based variable used to monitor global vegetation distribution and growth. However, existing vegetation index datasets face limitations in achieving both high spatial and temporal resolution, restricting their application potential. This study revised a machine learning spatiotemporal fusion model (InENVI) to produce a high-resolution NDVI dataset with 8-day temporal and 30 m spatial resolution, covering China from 2001 to 2020. A total of 432,230 Landsat scenes were processed, enhancing data quality and accuracy. The dataset was validated using 255,000 samples across 6 geographical regions, showing strong performance in capturing spatiotemporal NDVI variations. Additionally, the dataset effectively addresses Scan Line Corrector-off stripes in Landsat 7 imagery. This dataset enables reliable annual NDVI estimates for China at a 30-m resolution and is available for reuse through an open data repository.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"152"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770109/pdf/","citationCount":"0","resultStr":"{\"title\":\"Long-term reconstructed vegetation index dataset in China from fused MODIS and Landsat data.\",\"authors\":\"Xiangqian Li, Qiongyan Peng, Ruoque Shen, Wenfang Xu, Zhangcai Qin, Shangrong Lin, Si Ha, Dongdong Kong, Wenping Yuan\",\"doi\":\"10.1038/s41597-025-04497-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The vegetation index is a key satellite-based variable used to monitor global vegetation distribution and growth. However, existing vegetation index datasets face limitations in achieving both high spatial and temporal resolution, restricting their application potential. This study revised a machine learning spatiotemporal fusion model (InENVI) to produce a high-resolution NDVI dataset with 8-day temporal and 30 m spatial resolution, covering China from 2001 to 2020. A total of 432,230 Landsat scenes were processed, enhancing data quality and accuracy. The dataset was validated using 255,000 samples across 6 geographical regions, showing strong performance in capturing spatiotemporal NDVI variations. Additionally, the dataset effectively addresses Scan Line Corrector-off stripes in Landsat 7 imagery. This dataset enables reliable annual NDVI estimates for China at a 30-m resolution and is available for reuse through an open data repository.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"152\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770109/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-04497-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04497-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植被指数是监测全球植被分布和生长的关键卫星变量。然而,现有植被指数数据集在实现高时空分辨率方面存在局限性,制约了其应用潜力。本研究修正了机器学习时空融合模型(InENVI),生成了覆盖中国2001 - 2020年8天时间和30 m空间分辨率的高分辨率NDVI数据集。总共处理了432,230个陆地卫星场景,提高了数据质量和准确性。该数据集在6个地理区域使用255,000个样本进行验证,在捕获NDVI时空变化方面表现出色。此外,该数据集有效地解决了Landsat 7图像中的扫描线校正条纹。该数据集能够以30米分辨率对中国进行可靠的年度NDVI估计,并可通过开放数据存储库进行重用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-term reconstructed vegetation index dataset in China from fused MODIS and Landsat data.

The vegetation index is a key satellite-based variable used to monitor global vegetation distribution and growth. However, existing vegetation index datasets face limitations in achieving both high spatial and temporal resolution, restricting their application potential. This study revised a machine learning spatiotemporal fusion model (InENVI) to produce a high-resolution NDVI dataset with 8-day temporal and 30 m spatial resolution, covering China from 2001 to 2020. A total of 432,230 Landsat scenes were processed, enhancing data quality and accuracy. The dataset was validated using 255,000 samples across 6 geographical regions, showing strong performance in capturing spatiotemporal NDVI variations. Additionally, the dataset effectively addresses Scan Line Corrector-off stripes in Landsat 7 imagery. This dataset enables reliable annual NDVI estimates for China at a 30-m resolution and is available for reuse through an open data repository.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信