{"title":"动态共表达方法揭示了Gins2是HNSCC转移的潜在上游调节剂。","authors":"Nasibeh Khayer, Samira Shabani, Maryam Jalessi, Mohammad Taghi Joghataei, Frouzandeh Mahjoubi","doi":"10.1038/s41598-024-82668-1","DOIUrl":null,"url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer that is notably associated with a high risk of lymph node metastasis, a major cause of cancer mortality. Current therapeutic options remain limited to surgery supplemented by radio- or chemotherapy; however, these interventions often result in high-grade toxicities. Distant metastasis significantly contributed to the poor prognosis and decreased survival rates. However, the underlying molecular mechanisms remain poorly understood. Disease-related \"omics\" data provide a comprehensive overview of gene relationships, helping to decode the complex molecular mechanisms involved. Interactions between biological molecules are complex and highly dynamic across various cellular conditions, making traditional co-expression methods inadequate for understanding these intricate relationships. In the present study, a novel three-way interaction approach was employed to uncover dynamic co-expression relationships underlying the metastatic nature of HNSCC. Subsequently, the biologically relevant triples from statistically significant ones were defined through gene set enrichment analysis and reconstruction of the gene regulatory network. Finally, the validity of biologically relevant triplets was assessed at the protein level. The results highlighted the \"PI3K/AKT/mTOR (PAM) signaling pathway\" as a disrupted pathway involved in the metastatic nature of HNSCC. Notably, Gins2, identified as a switch gene, along with the gene pair {Akt2, Anxa2}, formed a statistically significant and biologically relevant triplet. It suggests that Gins2 could serve as a potential upstream modulator in the PAM signaling pathway, playing a crucial role in the distant metastasis of HNSCC. In addition, survival analysis of significant switch genes indicated that two genes, C19orf33 and Usp13, may be especially important for prognostic purposes in HNSCC.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3322"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770085/pdf/","citationCount":"0","resultStr":"{\"title\":\"A dynamic co-expression approach reveals Gins2 as a potential upstream modulator of HNSCC metastasis.\",\"authors\":\"Nasibeh Khayer, Samira Shabani, Maryam Jalessi, Mohammad Taghi Joghataei, Frouzandeh Mahjoubi\",\"doi\":\"10.1038/s41598-024-82668-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer that is notably associated with a high risk of lymph node metastasis, a major cause of cancer mortality. Current therapeutic options remain limited to surgery supplemented by radio- or chemotherapy; however, these interventions often result in high-grade toxicities. Distant metastasis significantly contributed to the poor prognosis and decreased survival rates. However, the underlying molecular mechanisms remain poorly understood. Disease-related \\\"omics\\\" data provide a comprehensive overview of gene relationships, helping to decode the complex molecular mechanisms involved. Interactions between biological molecules are complex and highly dynamic across various cellular conditions, making traditional co-expression methods inadequate for understanding these intricate relationships. In the present study, a novel three-way interaction approach was employed to uncover dynamic co-expression relationships underlying the metastatic nature of HNSCC. Subsequently, the biologically relevant triples from statistically significant ones were defined through gene set enrichment analysis and reconstruction of the gene regulatory network. Finally, the validity of biologically relevant triplets was assessed at the protein level. The results highlighted the \\\"PI3K/AKT/mTOR (PAM) signaling pathway\\\" as a disrupted pathway involved in the metastatic nature of HNSCC. Notably, Gins2, identified as a switch gene, along with the gene pair {Akt2, Anxa2}, formed a statistically significant and biologically relevant triplet. It suggests that Gins2 could serve as a potential upstream modulator in the PAM signaling pathway, playing a crucial role in the distant metastasis of HNSCC. In addition, survival analysis of significant switch genes indicated that two genes, C19orf33 and Usp13, may be especially important for prognostic purposes in HNSCC.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"3322\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770085/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-82668-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82668-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A dynamic co-expression approach reveals Gins2 as a potential upstream modulator of HNSCC metastasis.
Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer that is notably associated with a high risk of lymph node metastasis, a major cause of cancer mortality. Current therapeutic options remain limited to surgery supplemented by radio- or chemotherapy; however, these interventions often result in high-grade toxicities. Distant metastasis significantly contributed to the poor prognosis and decreased survival rates. However, the underlying molecular mechanisms remain poorly understood. Disease-related "omics" data provide a comprehensive overview of gene relationships, helping to decode the complex molecular mechanisms involved. Interactions between biological molecules are complex and highly dynamic across various cellular conditions, making traditional co-expression methods inadequate for understanding these intricate relationships. In the present study, a novel three-way interaction approach was employed to uncover dynamic co-expression relationships underlying the metastatic nature of HNSCC. Subsequently, the biologically relevant triples from statistically significant ones were defined through gene set enrichment analysis and reconstruction of the gene regulatory network. Finally, the validity of biologically relevant triplets was assessed at the protein level. The results highlighted the "PI3K/AKT/mTOR (PAM) signaling pathway" as a disrupted pathway involved in the metastatic nature of HNSCC. Notably, Gins2, identified as a switch gene, along with the gene pair {Akt2, Anxa2}, formed a statistically significant and biologically relevant triplet. It suggests that Gins2 could serve as a potential upstream modulator in the PAM signaling pathway, playing a crucial role in the distant metastasis of HNSCC. In addition, survival analysis of significant switch genes indicated that two genes, C19orf33 and Usp13, may be especially important for prognostic purposes in HNSCC.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.