中性粒细胞对口腔链球菌生物膜的双向作用。

IF 5.5 2区 医学 Q2 MICROBIOLOGY
Journal of Oral Microbiology Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.1080/20002297.2025.2453986
Basmah M Almaarik, Rizwan Ali, Paul R Cooper, Michael R Milward, Josefine Hirschfeld
{"title":"中性粒细胞对口腔链球菌生物膜的双向作用。","authors":"Basmah M Almaarik, Rizwan Ali, Paul R Cooper, Michael R Milward, Josefine Hirschfeld","doi":"10.1080/20002297.2025.2453986","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>Streptococcus oralis</i> is a commensal bacterium and an early biofilm coloniser found in the human oral cavity. One of the biofilm matrix constituents is bacterial extracellular DNA (eDNA). Neutrophils are innate immune cells that respond to biofilms, employing antimicrobial mechanisms such as neutrophil extracellular trap (NET) and reactive oxygen species (ROS) release. Here, bidirectional effects of neutrophils on <i>S.</i> <i>oralis</i> biofilms were investigated.</p><p><strong>Materials and methods: </strong>Isolated neutrophils were introduced to <i>S. oralis</i> biofilms at different stages of biofilm development. Biofilm quantity was assessed by crystal violet technique, confocal microscopy and CFU enumeration. Surface adhesion during shear stress was quantified by spectrophotometry. Bacterial and neutrophil extracellular DNA within biofilms and ROS production were analysed using fluorescence and luminescence assays, and neutrophil-eDNA interactions were investigated by flow cytometry and fluorescence microscopy.</p><p><strong>Results: </strong>Neutrophils decreased <i>S. oralis</i> biofilm quantity transiently and reduced eDNA but did not affect biofilm surface adhesion. Unexpectedly, CFUs were increased by neutrophils. Bacterial DNA was found to co-localise with neutrophil membranes. Neutrophils produced elevated total and intracellular ROS, however, no NETs in response to biofilms.</p><p><strong>Conclusion: </strong>Neutrophils <i>in</i> <i>vitro</i> are not excessively activated by <i>S. oralis</i> biofilms but are able to reduce biofilm quantity in the short-term, possibly through interfering with eDNA.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2453986"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758797/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bidirectional effects of neutrophils on <i>Streptococcus oralis</i> biofilms <i>in vitro</i>.\",\"authors\":\"Basmah M Almaarik, Rizwan Ali, Paul R Cooper, Michael R Milward, Josefine Hirschfeld\",\"doi\":\"10.1080/20002297.2025.2453986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong><i>Streptococcus oralis</i> is a commensal bacterium and an early biofilm coloniser found in the human oral cavity. One of the biofilm matrix constituents is bacterial extracellular DNA (eDNA). Neutrophils are innate immune cells that respond to biofilms, employing antimicrobial mechanisms such as neutrophil extracellular trap (NET) and reactive oxygen species (ROS) release. Here, bidirectional effects of neutrophils on <i>S.</i> <i>oralis</i> biofilms were investigated.</p><p><strong>Materials and methods: </strong>Isolated neutrophils were introduced to <i>S. oralis</i> biofilms at different stages of biofilm development. Biofilm quantity was assessed by crystal violet technique, confocal microscopy and CFU enumeration. Surface adhesion during shear stress was quantified by spectrophotometry. Bacterial and neutrophil extracellular DNA within biofilms and ROS production were analysed using fluorescence and luminescence assays, and neutrophil-eDNA interactions were investigated by flow cytometry and fluorescence microscopy.</p><p><strong>Results: </strong>Neutrophils decreased <i>S. oralis</i> biofilm quantity transiently and reduced eDNA but did not affect biofilm surface adhesion. Unexpectedly, CFUs were increased by neutrophils. Bacterial DNA was found to co-localise with neutrophil membranes. Neutrophils produced elevated total and intracellular ROS, however, no NETs in response to biofilms.</p><p><strong>Conclusion: </strong>Neutrophils <i>in</i> <i>vitro</i> are not excessively activated by <i>S. oralis</i> biofilms but are able to reduce biofilm quantity in the short-term, possibly through interfering with eDNA.</p>\",\"PeriodicalId\":16598,\"journal\":{\"name\":\"Journal of Oral Microbiology\",\"volume\":\"17 1\",\"pages\":\"2453986\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758797/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/20002297.2025.2453986\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/20002297.2025.2453986","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:口腔链球菌是一种共生细菌,是人类口腔中发现的早期生物膜定植菌。生物膜基质成分之一是细菌细胞外DNA (eDNA)。中性粒细胞是先天免疫细胞,对生物膜有反应,采用抗菌机制,如中性粒细胞胞外陷阱(NET)和活性氧(ROS)释放。本文研究了中性粒细胞对口腔链球菌生物膜的双向作用。材料与方法:在口腔链球菌生物膜发育的不同阶段,将分离的中性粒细胞引入生物膜。采用结晶紫技术、共聚焦显微镜和CFU计数法测定生物膜数量。用分光光度法测定剪切应力作用下的表面附着力。利用荧光和发光技术分析生物膜内的细菌和中性粒细胞细胞外DNA和ROS的产生,并利用流式细胞术和荧光显微镜研究中性粒细胞与edna的相互作用。结果:中性粒细胞短暂减少口腔链球菌生物膜数量,降低eDNA,但不影响生物膜表面粘附。出乎意料的是,中性粒细胞增加了cfu。发现细菌DNA与中性粒细胞膜共定位。中性粒细胞产生总ROS和细胞内ROS升高,然而,对生物膜的反应没有NETs。结论:体外中性粒细胞不会被口腔链球菌生物膜过度激活,但可以在短期内减少生物膜的数量,可能是通过干扰eDNA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bidirectional effects of neutrophils on Streptococcus oralis biofilms in vitro.

Background: Streptococcus oralis is a commensal bacterium and an early biofilm coloniser found in the human oral cavity. One of the biofilm matrix constituents is bacterial extracellular DNA (eDNA). Neutrophils are innate immune cells that respond to biofilms, employing antimicrobial mechanisms such as neutrophil extracellular trap (NET) and reactive oxygen species (ROS) release. Here, bidirectional effects of neutrophils on S. oralis biofilms were investigated.

Materials and methods: Isolated neutrophils were introduced to S. oralis biofilms at different stages of biofilm development. Biofilm quantity was assessed by crystal violet technique, confocal microscopy and CFU enumeration. Surface adhesion during shear stress was quantified by spectrophotometry. Bacterial and neutrophil extracellular DNA within biofilms and ROS production were analysed using fluorescence and luminescence assays, and neutrophil-eDNA interactions were investigated by flow cytometry and fluorescence microscopy.

Results: Neutrophils decreased S. oralis biofilm quantity transiently and reduced eDNA but did not affect biofilm surface adhesion. Unexpectedly, CFUs were increased by neutrophils. Bacterial DNA was found to co-localise with neutrophil membranes. Neutrophils produced elevated total and intracellular ROS, however, no NETs in response to biofilms.

Conclusion: Neutrophils in vitro are not excessively activated by S. oralis biofilms but are able to reduce biofilm quantity in the short-term, possibly through interfering with eDNA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
4.40%
发文量
52
审稿时长
12 weeks
期刊介绍: As the first Open Access journal in its field, the Journal of Oral Microbiology aims to be an influential source of knowledge on the aetiological agents behind oral infectious diseases. The journal is an international forum for original research on all aspects of ''oral health''. Articles which seek to understand ''oral health'' through exploration of the pathogenesis, virulence, host-parasite interactions, and immunology of oral infections are of particular interest. However, the journal also welcomes work that addresses the global agenda of oral infectious diseases and articles that present new strategies for treatment and prevention or improvements to existing strategies. Topics: ''oral health'', microbiome, genomics, host-pathogen interactions, oral infections, aetiologic agents, pathogenesis, molecular microbiology systemic diseases, ecology/environmental microbiology, treatment, diagnostics, epidemiology, basic oral microbiology, and taxonomy/systematics. Article types: original articles, notes, review articles, mini-reviews and commentaries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信