运动中的和谐:从心理学角度审视运动在阿尔茨海默病和糖尿病患者神经保护中的作用。

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dongzi Zhang, Munir Ullah Khan, Safir Ullah
{"title":"运动中的和谐:从心理学角度审视运动在阿尔茨海默病和糖尿病患者神经保护中的作用。","authors":"Dongzi Zhang, Munir Ullah Khan, Safir Ullah","doi":"10.2174/0113892010340895250119183021","DOIUrl":null,"url":null,"abstract":"<p><p>According to epidemiological studies, diabetes is more common in patients with AD, which suggests that diabetes is a significant risk factor for AD. Accelerating brain cell degeneration, worsening cognitive decline, and increasing susceptibility to AD can be attributed to pathogenic mechanisms linked to diabetes, such as impaired insulin signaling in the brain, neuroinflammation, oxidative stress, mitochondrial dysfunction, and vascular impairment. These factors can also lead to the accumulation of β-amyloid and tau protein phosphorylation. New research suggests that certain drugs used to manage diabetes have different levels of effectiveness in treating or preventing Alzheimer's disease. Exercise has numerous advantages, including the reduction of neuroinflammation, alleviation of oxidative stress and mitochondrial dysfunction, improvement of endothelial and cerebrovascular function, stimulation of neurogenesis, and prevention of pathological changes associated with diabetes-related Alzheimer's disease through various internal mechanisms. This study examined the development of Alzheimer's disease (AD) in relation to diabetes, evaluated the ability of specific antidiabetic drugs to prevent and treat AD, and investigated the impacts and underlying processes of exercise interventions in improving AD treatment for individuals with diabetes.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmony in Motion: The Role of Exercise in Orchestrating Neuroprotection for Individuals with Alzheimer's Disease and Diabetes Examined from a Psychological Perspective.\",\"authors\":\"Dongzi Zhang, Munir Ullah Khan, Safir Ullah\",\"doi\":\"10.2174/0113892010340895250119183021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>According to epidemiological studies, diabetes is more common in patients with AD, which suggests that diabetes is a significant risk factor for AD. Accelerating brain cell degeneration, worsening cognitive decline, and increasing susceptibility to AD can be attributed to pathogenic mechanisms linked to diabetes, such as impaired insulin signaling in the brain, neuroinflammation, oxidative stress, mitochondrial dysfunction, and vascular impairment. These factors can also lead to the accumulation of β-amyloid and tau protein phosphorylation. New research suggests that certain drugs used to manage diabetes have different levels of effectiveness in treating or preventing Alzheimer's disease. Exercise has numerous advantages, including the reduction of neuroinflammation, alleviation of oxidative stress and mitochondrial dysfunction, improvement of endothelial and cerebrovascular function, stimulation of neurogenesis, and prevention of pathological changes associated with diabetes-related Alzheimer's disease through various internal mechanisms. This study examined the development of Alzheimer's disease (AD) in relation to diabetes, evaluated the ability of specific antidiabetic drugs to prevent and treat AD, and investigated the impacts and underlying processes of exercise interventions in improving AD treatment for individuals with diabetes.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010340895250119183021\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010340895250119183021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

根据流行病学研究,糖尿病在AD患者中更为常见,这表明糖尿病是AD的重要危险因素。加速脑细胞退化、恶化认知能力下降和增加对AD的易感性可归因于与糖尿病相关的致病机制,如大脑中胰岛素信号受损、神经炎症、氧化应激、线粒体功能障碍和血管损伤。这些因素也可导致β-淀粉样蛋白和tau蛋白磷酸化的积累。新的研究表明,用于控制糖尿病的某些药物在治疗或预防阿尔茨海默病方面具有不同程度的有效性。运动有许多好处,包括减少神经炎症,减轻氧化应激和线粒体功能障碍,改善内皮和脑血管功能,刺激神经发生,并通过各种内部机制预防糖尿病相关阿尔茨海默病的病理改变。本研究考察了阿尔茨海默病(AD)的发展与糖尿病的关系,评估了特定抗糖尿病药物预防和治疗AD的能力,并研究了运动干预对改善糖尿病患者AD治疗的影响和潜在过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmony in Motion: The Role of Exercise in Orchestrating Neuroprotection for Individuals with Alzheimer's Disease and Diabetes Examined from a Psychological Perspective.

According to epidemiological studies, diabetes is more common in patients with AD, which suggests that diabetes is a significant risk factor for AD. Accelerating brain cell degeneration, worsening cognitive decline, and increasing susceptibility to AD can be attributed to pathogenic mechanisms linked to diabetes, such as impaired insulin signaling in the brain, neuroinflammation, oxidative stress, mitochondrial dysfunction, and vascular impairment. These factors can also lead to the accumulation of β-amyloid and tau protein phosphorylation. New research suggests that certain drugs used to manage diabetes have different levels of effectiveness in treating or preventing Alzheimer's disease. Exercise has numerous advantages, including the reduction of neuroinflammation, alleviation of oxidative stress and mitochondrial dysfunction, improvement of endothelial and cerebrovascular function, stimulation of neurogenesis, and prevention of pathological changes associated with diabetes-related Alzheimer's disease through various internal mechanisms. This study examined the development of Alzheimer's disease (AD) in relation to diabetes, evaluated the ability of specific antidiabetic drugs to prevent and treat AD, and investigated the impacts and underlying processes of exercise interventions in improving AD treatment for individuals with diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信