基于邻近守恒自编码器(PCAE)和集成技术的脑电信号情感分析。

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-01-23 DOI:10.1007/s11571-024-10187-w
R Mathumitha, A Maryposonia
{"title":"基于邻近守恒自编码器(PCAE)和集成技术的脑电信号情感分析。","authors":"R Mathumitha, A Maryposonia","doi":"10.1007/s11571-024-10187-w","DOIUrl":null,"url":null,"abstract":"<p><p>Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders. Recently, several deep learning (DL) based approaches have been developed for accurate emotion recognition tasks. Yet, previous works often struggle with poor recognition accuracy, high dimensionality, and high computational time. This research work designed an innovative framework named Proximity-conserving Auto-encoder (PCAE) for accurate emotion recognition based on EEG signals and resolves challenges faced by traditional emotion analysis techniques. For preserving local structures among the EEG data and reducing dimensionality, the proposed PCAE approach is introduced and it captures the essential features related to emotional states. The EEG data are collected from the EEG Brainwave dataset using a Muse EEG headband and applying preprocessing steps to enhance signal quality. The proposed PCAE model incorporates multiple convolution and deconvolution layers for encoding and decoding and deploys a Local Proximity Preservation Layer for preserving local correlations in the latent space. In addition, it develops a Proximity-conserving Squeeze-and-Excitation Auto-encoder (PC-SEAE) model to further improve the feature extraction ability of the PCAE technique. The proposed PCAE technique utilizes Maximum Mean Discrepancy (MMD) regularization to decrease the distribution discrepancy between input data and the extracted features. Moreover, the proposed model designs an ensemble model for emotion categorization that incorporates a one-versus-support vector machine (SVM), random forest (RF), and Long Short-Term Memory (LSTM) networks by utilizing each classifier's strength to enhance classification accuracy. Further, the performance of the proposed PCAE model is evaluated using diverse performance measures and the model attains outstanding results including accuracy, precision, and Kappa coefficient of 98.87%, 98.69%, and 0.983 respectively. This experimental validation proves that the proposed PCAE framework provides a significant contribution to accurate emotion recognition and classification systems.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"32"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emotion analysis of EEG signals using proximity-conserving auto-encoder (PCAE) and ensemble techniques.\",\"authors\":\"R Mathumitha, A Maryposonia\",\"doi\":\"10.1007/s11571-024-10187-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders. Recently, several deep learning (DL) based approaches have been developed for accurate emotion recognition tasks. Yet, previous works often struggle with poor recognition accuracy, high dimensionality, and high computational time. This research work designed an innovative framework named Proximity-conserving Auto-encoder (PCAE) for accurate emotion recognition based on EEG signals and resolves challenges faced by traditional emotion analysis techniques. For preserving local structures among the EEG data and reducing dimensionality, the proposed PCAE approach is introduced and it captures the essential features related to emotional states. The EEG data are collected from the EEG Brainwave dataset using a Muse EEG headband and applying preprocessing steps to enhance signal quality. The proposed PCAE model incorporates multiple convolution and deconvolution layers for encoding and decoding and deploys a Local Proximity Preservation Layer for preserving local correlations in the latent space. In addition, it develops a Proximity-conserving Squeeze-and-Excitation Auto-encoder (PC-SEAE) model to further improve the feature extraction ability of the PCAE technique. The proposed PCAE technique utilizes Maximum Mean Discrepancy (MMD) regularization to decrease the distribution discrepancy between input data and the extracted features. Moreover, the proposed model designs an ensemble model for emotion categorization that incorporates a one-versus-support vector machine (SVM), random forest (RF), and Long Short-Term Memory (LSTM) networks by utilizing each classifier's strength to enhance classification accuracy. Further, the performance of the proposed PCAE model is evaluated using diverse performance measures and the model attains outstanding results including accuracy, precision, and Kappa coefficient of 98.87%, 98.69%, and 0.983 respectively. This experimental validation proves that the proposed PCAE framework provides a significant contribution to accurate emotion recognition and classification systems.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"32\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10187-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10187-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

情绪识别在脑机接口(BCI)中起着至关重要的作用,它有助于识别和分类人类的积极、消极和中性情绪。脑机接口中的情感分析在医疗保健、教育、游戏和人机交互等不同领域保持着重要的前景。在医疗保健领域,基于脑电图(EEG)信号的情绪分析被用于为自闭症或情绪障碍患者提供个性化支持。最近,一些基于深度学习(DL)的方法被开发出来用于精确的情绪识别任务。然而,以往的工作往往存在识别精度差、维数高、计算时间长的问题。本研究设计了一种基于脑电信号的精确情绪识别的创新框架PCAE (proximity - preserving Auto-encoder),解决了传统情绪分析技术面临的挑战。为了保留脑电数据中的局部结构并降低维数,引入了PCAE方法,该方法捕获了与情绪状态相关的基本特征。利用Muse脑电头带从EEG脑波数据集中采集脑电数据,并进行预处理以提高信号质量。提出的PCAE模型采用多个卷积和反卷积层进行编码和解码,并部署一个局部邻近保存层来保持潜在空间中的局部相关性。此外,为了进一步提高PCAE技术的特征提取能力,还开发了一种邻近保护压缩激励自编码器(PC-SEAE)模型。提出的PCAE技术利用最大平均差异(MMD)正则化来减小输入数据与提取特征之间的分布差异。此外,该模型设计了一个集成的情感分类模型,该模型结合了单对支持向量机(SVM)、随机森林(RF)和长短期记忆(LSTM)网络,利用每个分类器的强度来提高分类精度。此外,采用多种性能指标对所提出的PCAE模型进行了性能评价,模型的准确度、精密度和Kappa系数分别达到了98.87%、98.69%和0.983。实验验证表明,所提出的PCAE框架为准确的情感识别和分类系统提供了重要的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotion analysis of EEG signals using proximity-conserving auto-encoder (PCAE) and ensemble techniques.

Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders. Recently, several deep learning (DL) based approaches have been developed for accurate emotion recognition tasks. Yet, previous works often struggle with poor recognition accuracy, high dimensionality, and high computational time. This research work designed an innovative framework named Proximity-conserving Auto-encoder (PCAE) for accurate emotion recognition based on EEG signals and resolves challenges faced by traditional emotion analysis techniques. For preserving local structures among the EEG data and reducing dimensionality, the proposed PCAE approach is introduced and it captures the essential features related to emotional states. The EEG data are collected from the EEG Brainwave dataset using a Muse EEG headband and applying preprocessing steps to enhance signal quality. The proposed PCAE model incorporates multiple convolution and deconvolution layers for encoding and decoding and deploys a Local Proximity Preservation Layer for preserving local correlations in the latent space. In addition, it develops a Proximity-conserving Squeeze-and-Excitation Auto-encoder (PC-SEAE) model to further improve the feature extraction ability of the PCAE technique. The proposed PCAE technique utilizes Maximum Mean Discrepancy (MMD) regularization to decrease the distribution discrepancy between input data and the extracted features. Moreover, the proposed model designs an ensemble model for emotion categorization that incorporates a one-versus-support vector machine (SVM), random forest (RF), and Long Short-Term Memory (LSTM) networks by utilizing each classifier's strength to enhance classification accuracy. Further, the performance of the proposed PCAE model is evaluated using diverse performance measures and the model attains outstanding results including accuracy, precision, and Kappa coefficient of 98.87%, 98.69%, and 0.983 respectively. This experimental validation proves that the proposed PCAE framework provides a significant contribution to accurate emotion recognition and classification systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信