基于rsfmri的脑熵与灰质体积和表面积呈负相关。

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY
Gianpaolo Del Mauro, Ze Wang
{"title":"基于rsfmri的脑熵与灰质体积和表面积呈负相关。","authors":"Gianpaolo Del Mauro, Ze Wang","doi":"10.1007/s00429-025-02897-6","DOIUrl":null,"url":null,"abstract":"<p><p>The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking. In this study, we use resting-state fMRI (rsfMRI) data to estimate BEN and investigate its associations with three structural brain metrics: gray matter volume (GMV), surface area (SA), and cortical thickness (CT). We performed separate analyses on BEN maps derived from four distinct rsfMRI runs, and used a voxelwise as well as a regions-of-interest (ROIs) approach. Our findings consistently showed that lower BEN was related to increased GMV and SA in the lateral frontal and temporal lobes, inferior parietal lobules, and precuneus. We hypothesize that lower BEN and higher SA might reflect higher brain reserve as well as increased information processing capacity.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 2","pages":"35"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"rsfMRI-based brain entropy is negatively correlated with gray matter volume and surface area.\",\"authors\":\"Gianpaolo Del Mauro, Ze Wang\",\"doi\":\"10.1007/s00429-025-02897-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking. In this study, we use resting-state fMRI (rsfMRI) data to estimate BEN and investigate its associations with three structural brain metrics: gray matter volume (GMV), surface area (SA), and cortical thickness (CT). We performed separate analyses on BEN maps derived from four distinct rsfMRI runs, and used a voxelwise as well as a regions-of-interest (ROIs) approach. Our findings consistently showed that lower BEN was related to increased GMV and SA in the lateral frontal and temporal lobes, inferior parietal lobules, and precuneus. We hypothesize that lower BEN and higher SA might reflect higher brain reserve as well as increased information processing capacity.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\"230 2\",\"pages\":\"35\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-025-02897-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-025-02897-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脑熵(BEN)反映了大脑活动的随机性,并与其时间相干性呈负相关。近年来,人们发现BEN与许多神经认知、生物和社会人口变量(如流体智力、年龄、性别和教育)有关。然而,关于BEN和大脑结构之间的潜在关系的证据仍然缺乏。在这项研究中,我们使用静息状态功能磁共振成像(rsfMRI)数据来估计BEN,并研究其与三个脑结构指标的关系:灰质体积(GMV)、表面积(SA)和皮质厚度(CT)。我们对来自四个不同rsfMRI运行的BEN地图进行了单独的分析,并使用了体素和兴趣区域(roi)方法。我们的研究结果一致表明,较低的BEN与外侧额叶和颞叶、下顶叶和楔前叶的GMV和SA增加有关。我们假设较低的BEN和较高的SA可能反映了较高的大脑储备和增加的信息处理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
rsfMRI-based brain entropy is negatively correlated with gray matter volume and surface area.

The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking. In this study, we use resting-state fMRI (rsfMRI) data to estimate BEN and investigate its associations with three structural brain metrics: gray matter volume (GMV), surface area (SA), and cortical thickness (CT). We performed separate analyses on BEN maps derived from four distinct rsfMRI runs, and used a voxelwise as well as a regions-of-interest (ROIs) approach. Our findings consistently showed that lower BEN was related to increased GMV and SA in the lateral frontal and temporal lobes, inferior parietal lobules, and precuneus. We hypothesize that lower BEN and higher SA might reflect higher brain reserve as well as increased information processing capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信