姜黄素共负载Lawsone固体脂质纳米颗粒对MCF-7乳腺癌细胞系的抗癌效果:基于统计JMP软件的实验方法优化

IF 1.7 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Assay and drug development technologies Pub Date : 2025-07-01 Epub Date: 2025-01-27 DOI:10.1089/adt.2024.125
Shivarani Penugonda, Pranusha Beesappagari, Maddileti Repollu, Poojitha Badiginchala, Samreen Qudsiya, Chinni Usha Sree Mala, Ravi Gundawar, Bhargav Eranti
{"title":"姜黄素共负载Lawsone固体脂质纳米颗粒对MCF-7乳腺癌细胞系的抗癌效果:基于统计JMP软件的实验方法优化","authors":"Shivarani Penugonda, Pranusha Beesappagari, Maddileti Repollu, Poojitha Badiginchala, Samreen Qudsiya, Chinni Usha Sree Mala, Ravi Gundawar, Bhargav Eranti","doi":"10.1089/adt.2024.125","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>The present study highlighted enhancing the therapeutic effectiveness of curcumin (CUR) co-loaded lawsone (LS) through a solid lipid nanoparticles (SLNs)-based delivery system. The cetyl palmitate (CP), polyethylene glycol 400 (PEG), and probe sonication time (PS) were considered as independent variables whereas particle size and % entrapment efficiency (EE) were selected as dependent variables. The CUR-LS-SLN was developed by hot emulsification followed by probe sonication. A 2<sup>3</sup> factorial design was utilized in formulation development using JMP software version 17. Notably, the particle size and %EE of all the formulations were about 500 nm and greater than 75%, respectively. The zeta potential value was found to be -46.8 mV. From leverage plots significant and sensitive factors on particle size and %EE were identified. Contour plots led to the identification of an optimized formula whereby maintaining CP at 100 mg, PEG 400 at 6 mL, and PS at 10 min the desired particle size and %EE was achieved. TEM studies indicated the spherical shape of the particles. MTT assays of Michigan Cancer Foundation-7 (MCF-7) cells showed enhanced efficacy and greater cell inhibition of CUR-LS-SLN and combining both drugs using nanocarriers gave superior inhibition as compared with using either of the drugs evident from IC<sub>50</sub> values of 3.7, 9.4, and 2.5 μM, respectively, for CUR, LS, and CUR-LS-SLN. The cells in the combination mostly had irregular cell walls and cell shrinkage was noted and greater cell reduction was also seen. It was found that the enhanced cytotoxicity effect of MCF-7 cells on the developed formulation was attributed to the drug's synergistic actions, more efficient nanocarrier internalizations, and sustained drug release from the formulation. Stability studies indicated that the optimized SLN was stable for 6 months.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"269-279"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Anticancer Efficiency of Curcumin Co-Loaded Lawsone Solid Lipid Nanoparticles Against MCF-7 Breast Cancer Cell Lines: Optimization by Statistical JMP Software-Based Experimental Approach.\",\"authors\":\"Shivarani Penugonda, Pranusha Beesappagari, Maddileti Repollu, Poojitha Badiginchala, Samreen Qudsiya, Chinni Usha Sree Mala, Ravi Gundawar, Bhargav Eranti\",\"doi\":\"10.1089/adt.2024.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\n <i>The present study highlighted enhancing the therapeutic effectiveness of curcumin (CUR) co-loaded lawsone (LS) through a solid lipid nanoparticles (SLNs)-based delivery system. The cetyl palmitate (CP), polyethylene glycol 400 (PEG), and probe sonication time (PS) were considered as independent variables whereas particle size and % entrapment efficiency (EE) were selected as dependent variables. The CUR-LS-SLN was developed by hot emulsification followed by probe sonication. A 2<sup>3</sup> factorial design was utilized in formulation development using JMP software version 17. Notably, the particle size and %EE of all the formulations were about 500 nm and greater than 75%, respectively. The zeta potential value was found to be -46.8 mV. From leverage plots significant and sensitive factors on particle size and %EE were identified. Contour plots led to the identification of an optimized formula whereby maintaining CP at 100 mg, PEG 400 at 6 mL, and PS at 10 min the desired particle size and %EE was achieved. TEM studies indicated the spherical shape of the particles. MTT assays of Michigan Cancer Foundation-7 (MCF-7) cells showed enhanced efficacy and greater cell inhibition of CUR-LS-SLN and combining both drugs using nanocarriers gave superior inhibition as compared with using either of the drugs evident from IC<sub>50</sub> values of 3.7, 9.4, and 2.5 μM, respectively, for CUR, LS, and CUR-LS-SLN. The cells in the combination mostly had irregular cell walls and cell shrinkage was noted and greater cell reduction was also seen. It was found that the enhanced cytotoxicity effect of MCF-7 cells on the developed formulation was attributed to the drug's synergistic actions, more efficient nanocarrier internalizations, and sustained drug release from the formulation. Stability studies indicated that the optimized SLN was stable for 6 months.</i>\\n </p>\",\"PeriodicalId\":8586,\"journal\":{\"name\":\"Assay and drug development technologies\",\"volume\":\" \",\"pages\":\"269-279\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assay and drug development technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/adt.2024.125\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2024.125","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究强调通过固体脂质纳米颗粒(SLNs)为基础的递送系统增强姜黄素(CUR)共载lawsone (LS)的治疗效果。以十六烷基棕榈酸酯(CP)、聚乙二醇400 (PEG)和探针超声时间(PS)为自变量,以粒径和%捕获效率(EE)为因变量。采用热乳化-探针超声法制备了curl - ls - sln。采用JMP软件第17版,采用23因子设计进行制剂开发。值得注意的是,所有配方的粒径均在500 nm左右,EE %均大于75%。zeta电位值为-46.8 mV。从杠杆图中确定了影响颗粒大小和EE的显著和敏感因素。等高线图确定了一个优化的配方,即保持CP为100 mg, PEG 400为6 mL, PS为10 min,即可获得所需的粒径和%EE。透射电镜研究表明,颗粒呈球形。密歇根癌症基金会-7 (MCF-7)细胞的MTT试验显示,CUR、LS和CUR-LS- sln的IC50值分别为3.7、9.4和2.5 μM,与使用任何一种药物相比,使用纳米载体联合使用两种药物具有更强的抑制作用和更强的细胞抑制作用。合并后的细胞多呈不规则细胞壁,细胞缩小,缩小幅度更大。研究发现,MCF-7细胞对所开发的制剂的细胞毒性作用增强是由于药物的协同作用、更有效的纳米载体内化以及药物从制剂中持续释放。稳定性研究表明,优化后的SLN在6个月内保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Anticancer Efficiency of Curcumin Co-Loaded Lawsone Solid Lipid Nanoparticles Against MCF-7 Breast Cancer Cell Lines: Optimization by Statistical JMP Software-Based Experimental Approach.

The present study highlighted enhancing the therapeutic effectiveness of curcumin (CUR) co-loaded lawsone (LS) through a solid lipid nanoparticles (SLNs)-based delivery system. The cetyl palmitate (CP), polyethylene glycol 400 (PEG), and probe sonication time (PS) were considered as independent variables whereas particle size and % entrapment efficiency (EE) were selected as dependent variables. The CUR-LS-SLN was developed by hot emulsification followed by probe sonication. A 23 factorial design was utilized in formulation development using JMP software version 17. Notably, the particle size and %EE of all the formulations were about 500 nm and greater than 75%, respectively. The zeta potential value was found to be -46.8 mV. From leverage plots significant and sensitive factors on particle size and %EE were identified. Contour plots led to the identification of an optimized formula whereby maintaining CP at 100 mg, PEG 400 at 6 mL, and PS at 10 min the desired particle size and %EE was achieved. TEM studies indicated the spherical shape of the particles. MTT assays of Michigan Cancer Foundation-7 (MCF-7) cells showed enhanced efficacy and greater cell inhibition of CUR-LS-SLN and combining both drugs using nanocarriers gave superior inhibition as compared with using either of the drugs evident from IC50 values of 3.7, 9.4, and 2.5 μM, respectively, for CUR, LS, and CUR-LS-SLN. The cells in the combination mostly had irregular cell walls and cell shrinkage was noted and greater cell reduction was also seen. It was found that the enhanced cytotoxicity effect of MCF-7 cells on the developed formulation was attributed to the drug's synergistic actions, more efficient nanocarrier internalizations, and sustained drug release from the formulation. Stability studies indicated that the optimized SLN was stable for 6 months.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Assay and drug development technologies
Assay and drug development technologies 医学-生化研究方法
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application. ASSAY and Drug Development Technologies coverage includes: -Assay design, target development, and high-throughput technologies- Hit to Lead optimization and medicinal chemistry through preclinical candidate selection- Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis- Approaches to assays configured for gene families, inherited, and infectious diseases- Assays and strategies for adapting model organisms to drug discovery- The use of stem cells as models of disease- Translation of phenotypic outputs to target identification- Exploration and mechanistic studies of the technical basis for assay and screening artifacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信