FXYD6被KLF10转录激活,抑制胃癌细胞的侵袭性。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-04-01 Epub Date: 2025-01-25 DOI:10.1007/s10616-025-00710-0
Chao Liu, Xin Zhou, Guangsheng Wang, Chenyu Zhu, Rui Xu
{"title":"FXYD6被KLF10转录激活,抑制胃癌细胞的侵袭性。","authors":"Chao Liu, Xin Zhou, Guangsheng Wang, Chenyu Zhu, Rui Xu","doi":"10.1007/s10616-025-00710-0","DOIUrl":null,"url":null,"abstract":"<p><p>Despite improvements in therapeutic approaches, the mortality rate of gastric cancer (GC) remains unacceptably high. Evidence suggests that FXYD domain containing ion transport regulator 6 (FXYD6) is downregulated in GC. However, its exact function and the molecular mechanism in GC are still unclear. FXYD6 expression in different cell lines was estimated using RT-qPCR. Western blotting was employed for protein expression detection. Cell counting kit-8 assay, colony formation assay, and flow cytometry were implemented to assess GC cell viability, proliferation, and apoptosis, respectively. Bioinformatics analysis as well as chromatin immunoprecipitation and luciferase reporter assays were utilized for verifying FXYD6 interaction with the transcription factor Krüppel-like factor 10 (KLF10). The results showed that FXYD6 displayed a decreased level in GC cell lines. Impaired proliferative ability and enhanced apoptotic capacity were observed in GC cells overexpressing FXYD6. KLF10 expression is positively correlated with FXYD6 expression in GC samples. KLF10 binds to the FXYD6 promoter to enhance its transcription. FXYD6 depletion counteracted KLF10 upregulation-triggered reduction in GC cell proliferation and elevation in apoptosis. In conclusion, KLF10 activates FXYD6 transcription, thereby impeding GC cell proliferation and promoting cell apoptosis.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"48"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759742/pdf/","citationCount":"0","resultStr":"{\"title\":\"FXYD6 is transcriptionally activated by KLF10 to suppress the aggressiveness of gastric cancer cells.\",\"authors\":\"Chao Liu, Xin Zhou, Guangsheng Wang, Chenyu Zhu, Rui Xu\",\"doi\":\"10.1007/s10616-025-00710-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite improvements in therapeutic approaches, the mortality rate of gastric cancer (GC) remains unacceptably high. Evidence suggests that FXYD domain containing ion transport regulator 6 (FXYD6) is downregulated in GC. However, its exact function and the molecular mechanism in GC are still unclear. FXYD6 expression in different cell lines was estimated using RT-qPCR. Western blotting was employed for protein expression detection. Cell counting kit-8 assay, colony formation assay, and flow cytometry were implemented to assess GC cell viability, proliferation, and apoptosis, respectively. Bioinformatics analysis as well as chromatin immunoprecipitation and luciferase reporter assays were utilized for verifying FXYD6 interaction with the transcription factor Krüppel-like factor 10 (KLF10). The results showed that FXYD6 displayed a decreased level in GC cell lines. Impaired proliferative ability and enhanced apoptotic capacity were observed in GC cells overexpressing FXYD6. KLF10 expression is positively correlated with FXYD6 expression in GC samples. KLF10 binds to the FXYD6 promoter to enhance its transcription. FXYD6 depletion counteracted KLF10 upregulation-triggered reduction in GC cell proliferation and elevation in apoptosis. In conclusion, KLF10 activates FXYD6 transcription, thereby impeding GC cell proliferation and promoting cell apoptosis.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"77 2\",\"pages\":\"48\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759742/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-025-00710-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00710-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管治疗方法有所改进,胃癌(GC)的死亡率仍然高得令人无法接受。有证据表明,含FXYD结构域的离子转运调节剂6 (FXYD6)在GC中下调。但其在GC中的确切作用和分子机制尚不清楚。RT-qPCR检测FXYD6在不同细胞系中的表达。Western blotting检测蛋白表达。采用细胞计数试剂盒-8法、集落形成法和流式细胞术分别评估GC细胞活力、增殖和凋亡。利用生物信息学分析、染色质免疫沉淀和荧光素酶报告基因检测验证FXYD6与转录因子kr ppel样因子10 (KLF10)的相互作用。结果显示,FXYD6在GC细胞系中表达水平降低。过表达FXYD6的GC细胞增殖能力受损,凋亡能力增强。GC样品中KLF10表达与FXYD6表达呈正相关。KLF10结合FXYD6启动子增强其转录。FXYD6缺失抵消了KLF10上调引发的GC细胞增殖减少和凋亡升高。综上所述,KLF10激活FXYD6转录,从而抑制GC细胞增殖,促进细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FXYD6 is transcriptionally activated by KLF10 to suppress the aggressiveness of gastric cancer cells.

Despite improvements in therapeutic approaches, the mortality rate of gastric cancer (GC) remains unacceptably high. Evidence suggests that FXYD domain containing ion transport regulator 6 (FXYD6) is downregulated in GC. However, its exact function and the molecular mechanism in GC are still unclear. FXYD6 expression in different cell lines was estimated using RT-qPCR. Western blotting was employed for protein expression detection. Cell counting kit-8 assay, colony formation assay, and flow cytometry were implemented to assess GC cell viability, proliferation, and apoptosis, respectively. Bioinformatics analysis as well as chromatin immunoprecipitation and luciferase reporter assays were utilized for verifying FXYD6 interaction with the transcription factor Krüppel-like factor 10 (KLF10). The results showed that FXYD6 displayed a decreased level in GC cell lines. Impaired proliferative ability and enhanced apoptotic capacity were observed in GC cells overexpressing FXYD6. KLF10 expression is positively correlated with FXYD6 expression in GC samples. KLF10 binds to the FXYD6 promoter to enhance its transcription. FXYD6 depletion counteracted KLF10 upregulation-triggered reduction in GC cell proliferation and elevation in apoptosis. In conclusion, KLF10 activates FXYD6 transcription, thereby impeding GC cell proliferation and promoting cell apoptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信