用 L-DOPA 制作用于肌腱再生的微图案形状记忆聚合物贴片

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Yucheol Son, Min Suk Lee, Dong Jun Hwang, Sun Hong Lee, Albert S Lee, Seung Sang Hwang, Dong Hoon Choi, Chris Hyunchul Jo, Hee Seok Yang
{"title":"用 L-DOPA 制作用于肌腱再生的微图案形状记忆聚合物贴片","authors":"Yucheol Son, Min Suk Lee, Dong Jun Hwang, Sun Hong Lee, Albert S Lee, Seung Sang Hwang, Dong Hoon Choi, Chris Hyunchul Jo, Hee Seok Yang","doi":"10.1039/d4bm00298a","DOIUrl":null,"url":null,"abstract":"<p><p>A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP <i>via</i> capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects. The SMP patches (the SMP-flat patch is referred to as SMP-F, and the SMP-patterned patch is referred to as SMP-P) were surface-modified with 3,4-dihydroxy-L-phenylalanine (L-DOPA, referred to as D) for improving cell adhesion. We hypothesized that SMP patches could be applied in minimally invasive surgery and the micropatterned structure would improve tendon regeneration by providing geometrical cues. The SMP patches exhibited excellent shape-memory properties, mechanical performance, and biocompatibility <i>in vitro</i> and <i>in vivo</i>. Especially, SMP-DP demonstrated enhanced cell behaviors <i>in vitro</i>, including cell orientation, elongation, migration, and tenogenic differentiation potential. The <i>in vivo</i> data showed notable biomechanical functionality and histological morphometric findings in various analyses of SMP-DP in the ruptured Achilles tendon model.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of a micropatterned shape-memory polymer patch with L-DOPA for tendon regeneration.\",\"authors\":\"Yucheol Son, Min Suk Lee, Dong Jun Hwang, Sun Hong Lee, Albert S Lee, Seung Sang Hwang, Dong Hoon Choi, Chris Hyunchul Jo, Hee Seok Yang\",\"doi\":\"10.1039/d4bm00298a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP <i>via</i> capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects. The SMP patches (the SMP-flat patch is referred to as SMP-F, and the SMP-patterned patch is referred to as SMP-P) were surface-modified with 3,4-dihydroxy-L-phenylalanine (L-DOPA, referred to as D) for improving cell adhesion. We hypothesized that SMP patches could be applied in minimally invasive surgery and the micropatterned structure would improve tendon regeneration by providing geometrical cues. The SMP patches exhibited excellent shape-memory properties, mechanical performance, and biocompatibility <i>in vitro</i> and <i>in vivo</i>. Especially, SMP-DP demonstrated enhanced cell behaviors <i>in vitro</i>, including cell orientation, elongation, migration, and tenogenic differentiation potential. The <i>in vivo</i> data showed notable biomechanical functionality and histological morphometric findings in various analyses of SMP-DP in the ruptured Achilles tendon model.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4bm00298a\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm00298a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of a micropatterned shape-memory polymer patch with L-DOPA for tendon regeneration.

A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP via capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects. The SMP patches (the SMP-flat patch is referred to as SMP-F, and the SMP-patterned patch is referred to as SMP-P) were surface-modified with 3,4-dihydroxy-L-phenylalanine (L-DOPA, referred to as D) for improving cell adhesion. We hypothesized that SMP patches could be applied in minimally invasive surgery and the micropatterned structure would improve tendon regeneration by providing geometrical cues. The SMP patches exhibited excellent shape-memory properties, mechanical performance, and biocompatibility in vitro and in vivo. Especially, SMP-DP demonstrated enhanced cell behaviors in vitro, including cell orientation, elongation, migration, and tenogenic differentiation potential. The in vivo data showed notable biomechanical functionality and histological morphometric findings in various analyses of SMP-DP in the ruptured Achilles tendon model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信