亲氟和疏水改性聚甘油基涂料对低表面能聚合物润湿性的影响

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Florian Junge, Rainer Haag
{"title":"亲氟和疏水改性聚甘油基涂料对低表面能聚合物润湿性的影响","authors":"Florian Junge, Rainer Haag","doi":"10.1021/acs.langmuir.4c04220","DOIUrl":null,"url":null,"abstract":"Catechol-derived polymers form stable coatings on a wide range of materials including challenging to coat low surface energy polymers. Whether modification of the coating polymer with fluorophilic or hydrophobic groups is a successful approach to further favor the coating of hydrophobic or fluorophilic surfaces with catechol-based polymers remains ambiguous. Herein, we report the effect of a series of catechol-derived polyglycerol (PG)-based coatings and monolayer coatings on the wettability of polytetrafluoroethylene (PTFE), polystyrene, and poly(methyl methacrylate) surfaces. Coatings with a longer hydrophilic PG block resulted in surface coatings with water contact angles (WCAs) around 60° independently of the modification and substrate, while coatings with a longer hydrophobic anchoring block possessed more diverse WCAs up to (129 ± 10)°. Despite the generally small impact of the fluorophilic modification for most substrate/coating combinations, some fluorophilic modified coatings reduce the WCA of PTFE below Berg’s limit of 65°, indicating a shielding of fluorous segments from the surface.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"67 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Fluorophilic- and Hydrophobic-Modified Polyglycerol-Based Coatings on the Wettability of Low Surface Energy Polymers\",\"authors\":\"Florian Junge, Rainer Haag\",\"doi\":\"10.1021/acs.langmuir.4c04220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Catechol-derived polymers form stable coatings on a wide range of materials including challenging to coat low surface energy polymers. Whether modification of the coating polymer with fluorophilic or hydrophobic groups is a successful approach to further favor the coating of hydrophobic or fluorophilic surfaces with catechol-based polymers remains ambiguous. Herein, we report the effect of a series of catechol-derived polyglycerol (PG)-based coatings and monolayer coatings on the wettability of polytetrafluoroethylene (PTFE), polystyrene, and poly(methyl methacrylate) surfaces. Coatings with a longer hydrophilic PG block resulted in surface coatings with water contact angles (WCAs) around 60° independently of the modification and substrate, while coatings with a longer hydrophobic anchoring block possessed more diverse WCAs up to (129 ± 10)°. Despite the generally small impact of the fluorophilic modification for most substrate/coating combinations, some fluorophilic modified coatings reduce the WCA of PTFE below Berg’s limit of 65°, indicating a shielding of fluorous segments from the surface.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c04220\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04220","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

儿茶酚衍生聚合物可在多种材料上形成稳定的涂层,包括难以涂覆的低表面能聚合物。用亲氟基团或疏水基团修饰涂层聚合物是否是一种成功的方法,以进一步促进疏水或亲氟表面与邻苯二酚基聚合物的涂层,目前仍不明确。在此,我们报告了一系列基于邻苯二酚衍生的聚甘油(PG)涂层和单层涂层对聚四氟乙烯(PTFE)、聚苯乙烯和聚(甲基丙烯酸甲酯)表面润湿性的影响。具有较长亲水性 PG 嵌段的涂层所形成的表面涂层的水接触角(WCA)约为 60°,与改性和基底无关,而具有较长疏水锚定嵌段的涂层所形成的水接触角(WCA)则更为多样,可达 (129 ± 10)°。尽管亲氟改性对大多数基材/涂层组合的影响普遍较小,但一些亲氟改性涂层将聚四氟乙烯的 WCA 降到了伯格极限(65°)以下,这表明表面屏蔽了氟段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Fluorophilic- and Hydrophobic-Modified Polyglycerol-Based Coatings on the Wettability of Low Surface Energy Polymers

Effect of Fluorophilic- and Hydrophobic-Modified Polyglycerol-Based Coatings on the Wettability of Low Surface Energy Polymers
Catechol-derived polymers form stable coatings on a wide range of materials including challenging to coat low surface energy polymers. Whether modification of the coating polymer with fluorophilic or hydrophobic groups is a successful approach to further favor the coating of hydrophobic or fluorophilic surfaces with catechol-based polymers remains ambiguous. Herein, we report the effect of a series of catechol-derived polyglycerol (PG)-based coatings and monolayer coatings on the wettability of polytetrafluoroethylene (PTFE), polystyrene, and poly(methyl methacrylate) surfaces. Coatings with a longer hydrophilic PG block resulted in surface coatings with water contact angles (WCAs) around 60° independently of the modification and substrate, while coatings with a longer hydrophobic anchoring block possessed more diverse WCAs up to (129 ± 10)°. Despite the generally small impact of the fluorophilic modification for most substrate/coating combinations, some fluorophilic modified coatings reduce the WCA of PTFE below Berg’s limit of 65°, indicating a shielding of fluorous segments from the surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信