Tao Wang, Duoying Chen, Chenxi Wang, Haibing Wei, Yunsheng Ding
{"title":"高耐碱性的异构体聚芳烯哌啶电解质膜","authors":"Tao Wang, Duoying Chen, Chenxi Wang, Haibing Wei, Yunsheng Ding","doi":"10.1002/adfm.202422504","DOIUrl":null,"url":null,"abstract":"<p>The isomerization strategy is employed to enhance the alkaline stability of poly(arylene piperidinium)s (PAP) while maintaining the monomer commerciality and polymer architecture tunability. Isomeric poly(arylene piperidinium) (<i>i</i>-PAP) exhibits improved alkali resistance relative to conventional PAP, as evidenced by ex situ alkaline stability and in situ cell durability tests. Following treatment in 10 <span>m</span> aqueous NaOH at 80 °C for 360 h or operation at 0.4 A cm<sup>−2</sup> for 100 h in an anion exchange membrane fuel cell (AEMFC) prototype, the decomposition of the piperidinium moieties in <i>i</i>-PAP is ≈50% of that observed in PAP. Moreover, through a copolymerization strategy, the <i>i</i>-PAP-88 membrane, which has suppressed water absorption, reaches a peak power density of 1.44 W cm<sup>−2</sup> and demonstrates an in situ durability of 310 h. Furthermore, a noble metal-free (anode) AEM water electrolyzer (AEMWE) achieves a high current density of 6.43 A cm⁻<sup>2</sup> at 2.0 V and an excellent Faradaic efficiency of 98.3%. This study highlights a strategy for designing alkali-stable polyelectrolytes that mitigate degradation during the operation of alkaline electrochemical devices.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 23","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isomeric Poly(arylene piperidinium) Electrolyte Membranes with High Alkaline Durability\",\"authors\":\"Tao Wang, Duoying Chen, Chenxi Wang, Haibing Wei, Yunsheng Ding\",\"doi\":\"10.1002/adfm.202422504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The isomerization strategy is employed to enhance the alkaline stability of poly(arylene piperidinium)s (PAP) while maintaining the monomer commerciality and polymer architecture tunability. Isomeric poly(arylene piperidinium) (<i>i</i>-PAP) exhibits improved alkali resistance relative to conventional PAP, as evidenced by ex situ alkaline stability and in situ cell durability tests. Following treatment in 10 <span>m</span> aqueous NaOH at 80 °C for 360 h or operation at 0.4 A cm<sup>−2</sup> for 100 h in an anion exchange membrane fuel cell (AEMFC) prototype, the decomposition of the piperidinium moieties in <i>i</i>-PAP is ≈50% of that observed in PAP. Moreover, through a copolymerization strategy, the <i>i</i>-PAP-88 membrane, which has suppressed water absorption, reaches a peak power density of 1.44 W cm<sup>−2</sup> and demonstrates an in situ durability of 310 h. Furthermore, a noble metal-free (anode) AEM water electrolyzer (AEMWE) achieves a high current density of 6.43 A cm⁻<sup>2</sup> at 2.0 V and an excellent Faradaic efficiency of 98.3%. This study highlights a strategy for designing alkali-stable polyelectrolytes that mitigate degradation during the operation of alkaline electrochemical devices.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 23\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202422504\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202422504","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
采用异构化策略提高了聚芳烯哌啶(PAP)的碱性稳定性,同时保持了单体的商业性和聚合物结构的可调性。同分异构体聚(芳烯哌啶)(i-PAP)相对于传统PAP具有更好的耐碱性,非原位碱性稳定性和原位细胞耐久性试验证明了这一点。在阴离子交换膜燃料电池(AEMFC)原型中,在10 m NaOH水溶液中,在80°C下处理360小时或在0.4 A cm - 2下操作100小时,i-PAP中piperidinium部分的分解率约为PAP中所观察到的50%。此外,通过共聚策略,抑制了吸水的i-PAP-88膜达到了1.44 W cm - 2的峰值功率密度,并证明了310 h的原位耐久性。此外,无贵金属(阳极)AEM水电解器(AEMWE)在2.0 V下实现了6.43 a cm - 2的高电流密度和98.3%的优异法拉第效率。本研究强调了设计碱稳定聚电解质的策略,以减轻碱性电化学装置在操作过程中的降解。
Isomeric Poly(arylene piperidinium) Electrolyte Membranes with High Alkaline Durability
The isomerization strategy is employed to enhance the alkaline stability of poly(arylene piperidinium)s (PAP) while maintaining the monomer commerciality and polymer architecture tunability. Isomeric poly(arylene piperidinium) (i-PAP) exhibits improved alkali resistance relative to conventional PAP, as evidenced by ex situ alkaline stability and in situ cell durability tests. Following treatment in 10 m aqueous NaOH at 80 °C for 360 h or operation at 0.4 A cm−2 for 100 h in an anion exchange membrane fuel cell (AEMFC) prototype, the decomposition of the piperidinium moieties in i-PAP is ≈50% of that observed in PAP. Moreover, through a copolymerization strategy, the i-PAP-88 membrane, which has suppressed water absorption, reaches a peak power density of 1.44 W cm−2 and demonstrates an in situ durability of 310 h. Furthermore, a noble metal-free (anode) AEM water electrolyzer (AEMWE) achieves a high current density of 6.43 A cm⁻2 at 2.0 V and an excellent Faradaic efficiency of 98.3%. This study highlights a strategy for designing alkali-stable polyelectrolytes that mitigate degradation during the operation of alkaline electrochemical devices.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.