林分替代后34年亚高山森林恢复路径、植物群落和碳储量

IF 7.1 1区 环境科学与生态学 Q1 ECOLOGY
Nathan G. Kiel, Eileen F. Mavencamp, Monica G. Turner
{"title":"林分替代后34年亚高山森林恢复路径、植物群落和碳储量","authors":"Nathan G. Kiel,&nbsp;Eileen F. Mavencamp,&nbsp;Monica G. Turner","doi":"10.1002/ecm.1644","DOIUrl":null,"url":null,"abstract":"<p>Changing global climate and wildfire regimes are threatening forest resilience (i.e., the ability to recover from disturbance). Yet distinguishing areas of “no” versus “slow” postfire forest recovery is challenging, and consequences of sparse tree regeneration for plant communities and carbon dynamics are uncertain. We studied previously forested areas where tree regeneration remained sparse 34 years after the large, stand-replacing 1988 Yellowstone fires (Wyoming, USA) to ask the following questions: (1) What are the recovery pathways in areas of sparse and reduced forest recovery and how are they distributed across the landscape? (2) What explains variation in postfire tree regeneration density (total and by species) among sparse recovery pathways? (3) What are the implications of sparse recovery for understory plant communities? (4) How diminished are aboveground carbon stocks in areas of sparse postfire forest recovery? Tree densities and species-specific age distributions, understory plant communities, and carbon stocks were sampled in 55 plots during summer 2022. We detected three qualitatively distinct sparse recovery pathways (persistent sparse or non-forest, continuous tree infilling, and recent seedling and sapling establishment). Nearly half of the plots appeared “locked in” as persistently sparse or non-forest, while the remaining may be on a slow path to forest recovery. Plots with nearby upwind seed sources as well as in situ seed pressure from young postfire trees appear likely to recover to forest. Where trees were sparse or absent, plant communities resembled those found in meadows, capturing compositional changes expected to become more common with continued forest loss. However, forest-affinity species persisted in mesic locations, indicating mismatches between some plant communities and future forest change. Aboveground carbon stocks were low owing to minimal tree reestablishment. Almost all (96%) carbon was stored in coarse wood, a sharp departure from C storage patterns where forests are recovering. If not offset by future tree regeneration, decomposition of dead biomass will protract postfire aboveground carbon stock recovery. As global disturbance regimes and climate continue to change, determining the drivers of ecosystem reorganization and understanding how such changes will cascade to influence ecosystem structure and function will be increasingly important.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1644","citationCount":"0","resultStr":"{\"title\":\"Sparse subalpine forest recovery pathways, plant communities, and carbon stocks 34 years after stand-replacing fire\",\"authors\":\"Nathan G. Kiel,&nbsp;Eileen F. Mavencamp,&nbsp;Monica G. Turner\",\"doi\":\"10.1002/ecm.1644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Changing global climate and wildfire regimes are threatening forest resilience (i.e., the ability to recover from disturbance). Yet distinguishing areas of “no” versus “slow” postfire forest recovery is challenging, and consequences of sparse tree regeneration for plant communities and carbon dynamics are uncertain. We studied previously forested areas where tree regeneration remained sparse 34 years after the large, stand-replacing 1988 Yellowstone fires (Wyoming, USA) to ask the following questions: (1) What are the recovery pathways in areas of sparse and reduced forest recovery and how are they distributed across the landscape? (2) What explains variation in postfire tree regeneration density (total and by species) among sparse recovery pathways? (3) What are the implications of sparse recovery for understory plant communities? (4) How diminished are aboveground carbon stocks in areas of sparse postfire forest recovery? Tree densities and species-specific age distributions, understory plant communities, and carbon stocks were sampled in 55 plots during summer 2022. We detected three qualitatively distinct sparse recovery pathways (persistent sparse or non-forest, continuous tree infilling, and recent seedling and sapling establishment). Nearly half of the plots appeared “locked in” as persistently sparse or non-forest, while the remaining may be on a slow path to forest recovery. Plots with nearby upwind seed sources as well as in situ seed pressure from young postfire trees appear likely to recover to forest. Where trees were sparse or absent, plant communities resembled those found in meadows, capturing compositional changes expected to become more common with continued forest loss. However, forest-affinity species persisted in mesic locations, indicating mismatches between some plant communities and future forest change. Aboveground carbon stocks were low owing to minimal tree reestablishment. Almost all (96%) carbon was stored in coarse wood, a sharp departure from C storage patterns where forests are recovering. If not offset by future tree regeneration, decomposition of dead biomass will protract postfire aboveground carbon stock recovery. As global disturbance regimes and climate continue to change, determining the drivers of ecosystem reorganization and understanding how such changes will cascade to influence ecosystem structure and function will be increasingly important.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1644\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1644\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1644","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

不断变化的全球气候和野火制度正在威胁森林的复原力(即从干扰中恢复的能力)。然而,区分火灾后森林“无”恢复和“缓慢”恢复的区域是具有挑战性的,而且稀疏树木再生对植物群落和碳动态的影响是不确定的。我们研究了1988年美国怀俄明州黄石公园大火后34年树木再生仍然稀少的森林地区,提出以下问题:(1)森林恢复稀少和减少的地区的恢复途径是什么?它们在景观中的分布情况如何?(2)如何解释稀疏恢复路径中火灾后树木更新密度(总密度和物种密度)的变化?(3)稀疏恢复对林下植物群落的影响?(4)火灾后森林恢复稀疏区地上碳储量减少程度如何?在2022年夏季,对55个样地的树木密度和物种特定年龄分布、林下植物群落和碳储量进行了采样。我们发现了三种质量上不同的稀疏恢复途径(持续稀疏或非森林,连续树木填充和最近的幼苗和树苗建立)。近一半的样地似乎被“锁定”为持续的稀疏或无森林,而其余的样地可能正处于森林恢复的缓慢道路上。附近有逆风种子源的样地以及火灾后幼树的原位种子压力似乎有可能恢复到森林。在树木稀少或没有树木的地方,植物群落与草甸中发现的相似,捕捉到随着森林的持续消失而预计会变得更加普遍的成分变化。然而,与森林亲和的物种在中位位置持续存在,表明一些植物群落与未来森林变化之间存在不匹配。由于树木恢复最少,地上碳储量较低。几乎所有(96%)的碳都储存在粗木材中,这与森林正在恢复的碳储存模式大相径庭。如果不被未来的树木再生所抵消,死亡生物量的分解将延长火灾后地上碳储量的恢复。随着全球扰动机制和气候的持续变化,确定生态系统重组的驱动因素并了解这些变化将如何级联影响生态系统的结构和功能将变得越来越重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sparse subalpine forest recovery pathways, plant communities, and carbon stocks 34 years after stand-replacing fire

Sparse subalpine forest recovery pathways, plant communities, and carbon stocks 34 years after stand-replacing fire

Changing global climate and wildfire regimes are threatening forest resilience (i.e., the ability to recover from disturbance). Yet distinguishing areas of “no” versus “slow” postfire forest recovery is challenging, and consequences of sparse tree regeneration for plant communities and carbon dynamics are uncertain. We studied previously forested areas where tree regeneration remained sparse 34 years after the large, stand-replacing 1988 Yellowstone fires (Wyoming, USA) to ask the following questions: (1) What are the recovery pathways in areas of sparse and reduced forest recovery and how are they distributed across the landscape? (2) What explains variation in postfire tree regeneration density (total and by species) among sparse recovery pathways? (3) What are the implications of sparse recovery for understory plant communities? (4) How diminished are aboveground carbon stocks in areas of sparse postfire forest recovery? Tree densities and species-specific age distributions, understory plant communities, and carbon stocks were sampled in 55 plots during summer 2022. We detected three qualitatively distinct sparse recovery pathways (persistent sparse or non-forest, continuous tree infilling, and recent seedling and sapling establishment). Nearly half of the plots appeared “locked in” as persistently sparse or non-forest, while the remaining may be on a slow path to forest recovery. Plots with nearby upwind seed sources as well as in situ seed pressure from young postfire trees appear likely to recover to forest. Where trees were sparse or absent, plant communities resembled those found in meadows, capturing compositional changes expected to become more common with continued forest loss. However, forest-affinity species persisted in mesic locations, indicating mismatches between some plant communities and future forest change. Aboveground carbon stocks were low owing to minimal tree reestablishment. Almost all (96%) carbon was stored in coarse wood, a sharp departure from C storage patterns where forests are recovering. If not offset by future tree regeneration, decomposition of dead biomass will protract postfire aboveground carbon stock recovery. As global disturbance regimes and climate continue to change, determining the drivers of ecosystem reorganization and understanding how such changes will cascade to influence ecosystem structure and function will be increasingly important.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Monographs
Ecological Monographs 环境科学-生态学
CiteScore
12.20
自引率
0.00%
发文量
61
审稿时长
3 months
期刊介绍: The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology. Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message. Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology. Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions. In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信