整合子是副溶血性弧菌的抗噬菌体防御文库

IF 20.5 1区 生物学 Q1 MICROBIOLOGY
Landon J. Getz, Sam R. Fairburn, Y. Vivian Liu, Amy L. Qian, Karen L. Maxwell
{"title":"整合子是副溶血性弧菌的抗噬菌体防御文库","authors":"Landon J. Getz, Sam R. Fairburn, Y. Vivian Liu, Amy L. Qian, Karen L. Maxwell","doi":"10.1038/s41564-025-01927-7","DOIUrl":null,"url":null,"abstract":"Bacterial genomes have regions known as defence islands that encode diverse systems to protect against phage infection. Although genetic elements that capture and store gene cassettes in Vibrio species, called integrons, are known to play an important role in bacterial adaptation, a role in phage defence had not been defined. Here we combine bioinformatic and molecular techniques to show that the chromosomal integron of Vibrio parahaemolyticus is a hotspot for anti-phage defence genes. Using bioinformatics, we discovered that previously characterized defences localize to integrons. Intrigued by this discovery, we cloned 57 integron gene cassettes and identified 9 previously unrecognized systems that mediate defence. Our work reveals that integrons are an important reservoir of defence systems in V. parahaemolyticus. As integrons are of ancient origin and are widely distributed among Proteobacteria, these results provide an approach for the discovery of anti-phage defence systems across a broad range of bacteria. Integrons are genetic elements that capture and store gene cassettes in Vibrio species. Bioinformatic and molecular techniques show that these regions can be hotspots of phage defence systems.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"10 3","pages":"724-733"},"PeriodicalIF":20.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrons are anti-phage defence libraries in Vibrio parahaemolyticus\",\"authors\":\"Landon J. Getz, Sam R. Fairburn, Y. Vivian Liu, Amy L. Qian, Karen L. Maxwell\",\"doi\":\"10.1038/s41564-025-01927-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial genomes have regions known as defence islands that encode diverse systems to protect against phage infection. Although genetic elements that capture and store gene cassettes in Vibrio species, called integrons, are known to play an important role in bacterial adaptation, a role in phage defence had not been defined. Here we combine bioinformatic and molecular techniques to show that the chromosomal integron of Vibrio parahaemolyticus is a hotspot for anti-phage defence genes. Using bioinformatics, we discovered that previously characterized defences localize to integrons. Intrigued by this discovery, we cloned 57 integron gene cassettes and identified 9 previously unrecognized systems that mediate defence. Our work reveals that integrons are an important reservoir of defence systems in V. parahaemolyticus. As integrons are of ancient origin and are widely distributed among Proteobacteria, these results provide an approach for the discovery of anti-phage defence systems across a broad range of bacteria. Integrons are genetic elements that capture and store gene cassettes in Vibrio species. Bioinformatic and molecular techniques show that these regions can be hotspots of phage defence systems.\",\"PeriodicalId\":18992,\"journal\":{\"name\":\"Nature Microbiology\",\"volume\":\"10 3\",\"pages\":\"724-733\"},\"PeriodicalIF\":20.5000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41564-025-01927-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-025-01927-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌基因组有被称为防御岛的区域,这些区域编码各种系统以防止噬菌体感染。虽然在弧菌物种中捕获和储存基因盒的遗传元件,称为整合子,已知在细菌适应中起重要作用,但在噬菌体防御中的作用尚未确定。本研究结合生物信息学和分子技术表明,副溶血性弧菌染色体整合子是抗噬菌体防御基因的热点。利用生物信息学,我们发现先前表征的防御定位于整合子。被这一发现所吸引,我们克隆了57个整合子基因盒,并确定了9个以前未被识别的介导防御的系统。我们的工作表明,整合子是副溶血性弧菌防御系统的重要储存库。由于整合子具有古老的起源并广泛分布于变形菌中,这些结果为发现广泛细菌中的抗噬菌体防御系统提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrons are anti-phage defence libraries in Vibrio parahaemolyticus

Integrons are anti-phage defence libraries in Vibrio parahaemolyticus

Integrons are anti-phage defence libraries in Vibrio parahaemolyticus
Bacterial genomes have regions known as defence islands that encode diverse systems to protect against phage infection. Although genetic elements that capture and store gene cassettes in Vibrio species, called integrons, are known to play an important role in bacterial adaptation, a role in phage defence had not been defined. Here we combine bioinformatic and molecular techniques to show that the chromosomal integron of Vibrio parahaemolyticus is a hotspot for anti-phage defence genes. Using bioinformatics, we discovered that previously characterized defences localize to integrons. Intrigued by this discovery, we cloned 57 integron gene cassettes and identified 9 previously unrecognized systems that mediate defence. Our work reveals that integrons are an important reservoir of defence systems in V. parahaemolyticus. As integrons are of ancient origin and are widely distributed among Proteobacteria, these results provide an approach for the discovery of anti-phage defence systems across a broad range of bacteria. Integrons are genetic elements that capture and store gene cassettes in Vibrio species. Bioinformatic and molecular techniques show that these regions can be hotspots of phage defence systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Microbiology
Nature Microbiology Immunology and Microbiology-Microbiology
CiteScore
44.40
自引率
1.10%
发文量
226
期刊介绍: Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes: Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time. Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes. Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments. Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation. In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信