Argonaute2 和 Argonaute4 通过 mRNA 表达谱参与川崎病的发病机制

IF 2 4区 医学 Q2 PEDIATRICS
Zon-Min Lee, Hui-Chuan Chang, Shih-Feng Liu, Ying-Hsien Huang, Ho-Chang Kuo
{"title":"Argonaute2 和 Argonaute4 通过 mRNA 表达谱参与川崎病的发病机制","authors":"Zon-Min Lee, Hui-Chuan Chang, Shih-Feng Liu, Ying-Hsien Huang, Ho-Chang Kuo","doi":"10.3390/children12010073","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Argonautes (AGOs) are a type of protein that degrade specific messenger RNAs, consequently reducing the expression of a specific gene. These proteins consist of small, single-stranded RNA or DNA and may provide a route for detecting and silencing complementary mobile genetic elements. In this research, we investigated which AGO(s) were involved in Kawasaki disease (KD).</p><p><strong>Methods and materials: </strong>We obtained mRNA-level gene expression profiles from leukocyte samples that had previously been gathered in another study and uploaded to the NCBI GEO database. The Human Transcriptome Array (HTA 2.0) analysis included 50 children with KD prior to IVIG (KD1), 18 children with KD three weeks post-IVIG (KD3), 18 non-febrile controls (HC), and 18 febrile controls (FC), which were arranged in the quoted publications for all materials and methods in order to collect data. We used the default value of the commercialized microarray tool Partek to perform an analysis of variance and determine any significant fold changes (KD1, KD3, HC, and FC individually).</p><p><strong>Results: </strong>The data revealed that the AGO2 and AGO4 genes displayed significant within-group differences with <i>p</i> = 0.034 and 0.007, respectively. In AGO2, significant differences were observed between KD1 vs. HC + FC with <i>p</i> = 0.034. KD1 appears higher than the other specimens in AGO4, with significant differences between KD1 and HC (<i>p</i> = 0.033), KD1 and FC (<i>p</i> = 0.033), KD1 and KD3 (<i>p</i> = 0.013), and KD1 and HC + FC (<i>p</i> = 0.007). We observed no substantial differences in AGO1 or AGO3 (<i>p</i> > 0.05). There were no significant differences between AGO(s) and coronary artery lesions or intravenous immunoglobulin resistance. (<i>p</i> > 0.05) Conclusion: Endothelial cell inflammation and injury, two basic pathological mechanisms, are thought to be involved in coronary endothelial dysfunction in KD. AGO2 and AGO4 are likely to participate in the endothelial dysfunction of children with KD, with AGO4 potentially playing a key role, while AGO1 and AGO3 appear not to participate.</p>","PeriodicalId":48588,"journal":{"name":"Children-Basel","volume":"12 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Argonaute2 and Argonaute4 Involved in the Pathogenesis of Kawasaki Disease via mRNA Expression Profiles.\",\"authors\":\"Zon-Min Lee, Hui-Chuan Chang, Shih-Feng Liu, Ying-Hsien Huang, Ho-Chang Kuo\",\"doi\":\"10.3390/children12010073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Argonautes (AGOs) are a type of protein that degrade specific messenger RNAs, consequently reducing the expression of a specific gene. These proteins consist of small, single-stranded RNA or DNA and may provide a route for detecting and silencing complementary mobile genetic elements. In this research, we investigated which AGO(s) were involved in Kawasaki disease (KD).</p><p><strong>Methods and materials: </strong>We obtained mRNA-level gene expression profiles from leukocyte samples that had previously been gathered in another study and uploaded to the NCBI GEO database. The Human Transcriptome Array (HTA 2.0) analysis included 50 children with KD prior to IVIG (KD1), 18 children with KD three weeks post-IVIG (KD3), 18 non-febrile controls (HC), and 18 febrile controls (FC), which were arranged in the quoted publications for all materials and methods in order to collect data. We used the default value of the commercialized microarray tool Partek to perform an analysis of variance and determine any significant fold changes (KD1, KD3, HC, and FC individually).</p><p><strong>Results: </strong>The data revealed that the AGO2 and AGO4 genes displayed significant within-group differences with <i>p</i> = 0.034 and 0.007, respectively. In AGO2, significant differences were observed between KD1 vs. HC + FC with <i>p</i> = 0.034. KD1 appears higher than the other specimens in AGO4, with significant differences between KD1 and HC (<i>p</i> = 0.033), KD1 and FC (<i>p</i> = 0.033), KD1 and KD3 (<i>p</i> = 0.013), and KD1 and HC + FC (<i>p</i> = 0.007). We observed no substantial differences in AGO1 or AGO3 (<i>p</i> > 0.05). There were no significant differences between AGO(s) and coronary artery lesions or intravenous immunoglobulin resistance. (<i>p</i> > 0.05) Conclusion: Endothelial cell inflammation and injury, two basic pathological mechanisms, are thought to be involved in coronary endothelial dysfunction in KD. AGO2 and AGO4 are likely to participate in the endothelial dysfunction of children with KD, with AGO4 potentially playing a key role, while AGO1 and AGO3 appear not to participate.</p>\",\"PeriodicalId\":48588,\"journal\":{\"name\":\"Children-Basel\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Children-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/children12010073\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Children-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/children12010073","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Argonaute2 and Argonaute4 Involved in the Pathogenesis of Kawasaki Disease via mRNA Expression Profiles.

Background: Argonautes (AGOs) are a type of protein that degrade specific messenger RNAs, consequently reducing the expression of a specific gene. These proteins consist of small, single-stranded RNA or DNA and may provide a route for detecting and silencing complementary mobile genetic elements. In this research, we investigated which AGO(s) were involved in Kawasaki disease (KD).

Methods and materials: We obtained mRNA-level gene expression profiles from leukocyte samples that had previously been gathered in another study and uploaded to the NCBI GEO database. The Human Transcriptome Array (HTA 2.0) analysis included 50 children with KD prior to IVIG (KD1), 18 children with KD three weeks post-IVIG (KD3), 18 non-febrile controls (HC), and 18 febrile controls (FC), which were arranged in the quoted publications for all materials and methods in order to collect data. We used the default value of the commercialized microarray tool Partek to perform an analysis of variance and determine any significant fold changes (KD1, KD3, HC, and FC individually).

Results: The data revealed that the AGO2 and AGO4 genes displayed significant within-group differences with p = 0.034 and 0.007, respectively. In AGO2, significant differences were observed between KD1 vs. HC + FC with p = 0.034. KD1 appears higher than the other specimens in AGO4, with significant differences between KD1 and HC (p = 0.033), KD1 and FC (p = 0.033), KD1 and KD3 (p = 0.013), and KD1 and HC + FC (p = 0.007). We observed no substantial differences in AGO1 or AGO3 (p > 0.05). There were no significant differences between AGO(s) and coronary artery lesions or intravenous immunoglobulin resistance. (p > 0.05) Conclusion: Endothelial cell inflammation and injury, two basic pathological mechanisms, are thought to be involved in coronary endothelial dysfunction in KD. AGO2 and AGO4 are likely to participate in the endothelial dysfunction of children with KD, with AGO4 potentially playing a key role, while AGO1 and AGO3 appear not to participate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Children-Basel
Children-Basel PEDIATRICS-
CiteScore
2.70
自引率
16.70%
发文量
1735
审稿时长
6 weeks
期刊介绍: Children is an international, open access journal dedicated to a streamlined, yet scientifically rigorous, dissemination of peer-reviewed science related to childhood health and disease in developed and developing countries. The publication focuses on sharing clinical, epidemiological and translational science relevant to children’s health. Moreover, the primary goals of the publication are to highlight under‑represented pediatric disciplines, to emphasize interdisciplinary research and to disseminate advances in knowledge in global child health. In addition to original research, the journal publishes expert editorials and commentaries, clinical case reports, and insightful communications reflecting the latest developments in pediatric medicine. By publishing meritorious articles as soon as the editorial review process is completed, rather than at predefined intervals, Children also permits rapid open access sharing of new information, allowing us to reach the broadest audience in the most expedient fashion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信