用于人脑成像的漫射光学断层成像中的超高密度成像阵列提高了图像质量和解码性能。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zachary E Markow, Jason W Trobaugh, Edward J Richter, Kalyan Tripathy, Sean M Rafferty, Alexandra M Svoboda, Mariel L Schroeder, Tracy M Burns-Yocum, Karla M Bergonzi, Mark A Chevillet, Emily M Mugler, Adam T Eggebrecht, Joseph P Culver
{"title":"用于人脑成像的漫射光学断层成像中的超高密度成像阵列提高了图像质量和解码性能。","authors":"Zachary E Markow, Jason W Trobaugh, Edward J Richter, Kalyan Tripathy, Sean M Rafferty, Alexandra M Svoboda, Mariel L Schroeder, Tracy M Burns-Yocum, Karla M Bergonzi, Mark A Chevillet, Emily M Mugler, Adam T Eggebrecht, Joseph P Culver","doi":"10.1038/s41598-025-85858-7","DOIUrl":null,"url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid. Herein, simulations indicated reducing inter-optode spacing to 6.5 mm, creating a higher-density grid with more source-detector distances, would further improve image quality and noise-resolution tradeoff, with diminishing returns below 6.5 mm. We then constructed an ultra-high-density DOT system (6.5-mm spacing) with 140 dB dynamic range that imaged stimulus-evoked activations with 30-50% higher spatial resolution and repeatable multi-focal activity with excellent agreement with participant-matched fMRI. Further, this system decoded visual stimulus position with 19-35% lower error than previous HD-DOT, throughout occipital cortex.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3175"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762274/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultra high density imaging arrays in diffuse optical tomography for human brain mapping improve image quality and decoding performance.\",\"authors\":\"Zachary E Markow, Jason W Trobaugh, Edward J Richter, Kalyan Tripathy, Sean M Rafferty, Alexandra M Svoboda, Mariel L Schroeder, Tracy M Burns-Yocum, Karla M Bergonzi, Mark A Chevillet, Emily M Mugler, Adam T Eggebrecht, Joseph P Culver\",\"doi\":\"10.1038/s41598-025-85858-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid. Herein, simulations indicated reducing inter-optode spacing to 6.5 mm, creating a higher-density grid with more source-detector distances, would further improve image quality and noise-resolution tradeoff, with diminishing returns below 6.5 mm. We then constructed an ultra-high-density DOT system (6.5-mm spacing) with 140 dB dynamic range that imaged stimulus-evoked activations with 30-50% higher spatial resolution and repeatable multi-focal activity with excellent agreement with participant-matched fMRI. Further, this system decoded visual stimulus position with 19-35% lower error than previous HD-DOT, throughout occipital cortex.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"3175\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-85858-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85858-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

功能磁共振成像(fMRI)极大地促进了非侵入性人脑制图和解码。功能性近红外光谱(fNIRS)和高密度漫射光学断层扫描(HD-DOT)无创测量与大脑活动相关的血氧波动,就像fMRI一样,在大脑表面,使用更轻的设备,绕过了fMRI的人体工程学和后勤限制。与稀疏的fNIRS (~ 30 mm)相比,HD-DOT网格具有更小的光电间距(~ 13 mm),因此当使用HD-DOT网格提供的几个源-探测器距离(13-40 mm)时,可以提供更高的图像质量,空间分辨率约为fMRI的1/2。在此,模拟表明,将光电二极管间距减小到6.5 mm,创建具有更多源-检测器距离的高密度网格,将进一步改善图像质量和噪声分辨率权衡,收益在6.5 mm以下递减。然后,我们构建了一个140 dB动态范围的超高密度DOT系统(6.5 mm间距),该系统以30-50%的高空间分辨率和可重复的多焦点活动成像刺激诱发的激活,与参与者匹配的fMRI非常吻合。此外,该系统解码视觉刺激位置的误差比以前的HD-DOT降低了19-35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra high density imaging arrays in diffuse optical tomography for human brain mapping improve image quality and decoding performance.

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid. Herein, simulations indicated reducing inter-optode spacing to 6.5 mm, creating a higher-density grid with more source-detector distances, would further improve image quality and noise-resolution tradeoff, with diminishing returns below 6.5 mm. We then constructed an ultra-high-density DOT system (6.5-mm spacing) with 140 dB dynamic range that imaged stimulus-evoked activations with 30-50% higher spatial resolution and repeatable multi-focal activity with excellent agreement with participant-matched fMRI. Further, this system decoded visual stimulus position with 19-35% lower error than previous HD-DOT, throughout occipital cortex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信