在特种部队选拔计划中早期识别辍学者。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ruud J R den Hartigh, Rik Huijzer, Frank J Blaauw, Age de Wit, Peter de Jonge
{"title":"在特种部队选拔计划中早期识别辍学者。","authors":"Ruud J R den Hartigh, Rik Huijzer, Frank J Blaauw, Age de Wit, Peter de Jonge","doi":"10.1038/s41598-025-87604-5","DOIUrl":null,"url":null,"abstract":"<p><p>Recruits are exposed to high levels of psychological and physical stress during the special forces selection period, resulting in dropout rates of up to 80%. To identify who likely drops out, we assessed a group of 249 recruits, every week of the selection program, on their self-efficacy, motivation, experienced psychological and physical stress, and recovery. Using linear regression as well as state-of-the-art machine learning techniques, we aimed to build a model that could meaningfully predict dropout while remaining interpretable. Furthermore, we inspected the best-performing model to identify the most important predictors of dropout. Via cross-validation, we found that linear regression had a relatively good predictive performance with an Area Under the Curve of 0.69, and provided interpretable insights. Low levels of self-efficacy and motivation were the significant predictors of dropout. Additionally, we found that dropout could often be predicted multiple weeks in advance. These findings offer novel insights in the use of prediction models on psychological and physical processes, specifically in the context of special forces selection. This offers opportunities for early intervention and support, which may ultimately improve success rates of selection programs.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3242"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762757/pdf/","citationCount":"0","resultStr":"{\"title\":\"Early identification of dropouts during the special forces selection program.\",\"authors\":\"Ruud J R den Hartigh, Rik Huijzer, Frank J Blaauw, Age de Wit, Peter de Jonge\",\"doi\":\"10.1038/s41598-025-87604-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recruits are exposed to high levels of psychological and physical stress during the special forces selection period, resulting in dropout rates of up to 80%. To identify who likely drops out, we assessed a group of 249 recruits, every week of the selection program, on their self-efficacy, motivation, experienced psychological and physical stress, and recovery. Using linear regression as well as state-of-the-art machine learning techniques, we aimed to build a model that could meaningfully predict dropout while remaining interpretable. Furthermore, we inspected the best-performing model to identify the most important predictors of dropout. Via cross-validation, we found that linear regression had a relatively good predictive performance with an Area Under the Curve of 0.69, and provided interpretable insights. Low levels of self-efficacy and motivation were the significant predictors of dropout. Additionally, we found that dropout could often be predicted multiple weeks in advance. These findings offer novel insights in the use of prediction models on psychological and physical processes, specifically in the context of special forces selection. This offers opportunities for early intervention and support, which may ultimately improve success rates of selection programs.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"3242\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-87604-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87604-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在特种部队选拔期间,新兵面临着高水平的心理和身体压力,导致辍学率高达80%。为了确定哪些人可能会退出,我们每周都会对249名新兵进行评估,评估他们的自我效能感、动机、心理和生理压力经历以及恢复情况。使用线性回归和最先进的机器学习技术,我们的目标是建立一个模型,可以有意义地预测辍学,同时保持可解释性。此外,我们检验了表现最好的模型,以确定辍学最重要的预测因素。通过交叉验证,我们发现线性回归具有相对较好的预测性能,曲线下面积为0.69,并提供了可解释的见解。低水平的自我效能感和动机是辍学的重要预测因素。此外,我们发现退学通常可以提前数周预测。这些发现为心理和生理过程预测模型的使用提供了新的见解,特别是在特种部队选择的背景下。这为早期干预和支持提供了机会,这可能最终提高选择计划的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Early identification of dropouts during the special forces selection program.

Early identification of dropouts during the special forces selection program.

Early identification of dropouts during the special forces selection program.

Recruits are exposed to high levels of psychological and physical stress during the special forces selection period, resulting in dropout rates of up to 80%. To identify who likely drops out, we assessed a group of 249 recruits, every week of the selection program, on their self-efficacy, motivation, experienced psychological and physical stress, and recovery. Using linear regression as well as state-of-the-art machine learning techniques, we aimed to build a model that could meaningfully predict dropout while remaining interpretable. Furthermore, we inspected the best-performing model to identify the most important predictors of dropout. Via cross-validation, we found that linear regression had a relatively good predictive performance with an Area Under the Curve of 0.69, and provided interpretable insights. Low levels of self-efficacy and motivation were the significant predictors of dropout. Additionally, we found that dropout could often be predicted multiple weeks in advance. These findings offer novel insights in the use of prediction models on psychological and physical processes, specifically in the context of special forces selection. This offers opportunities for early intervention and support, which may ultimately improve success rates of selection programs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信