{"title":"基于改进DenseNet121的宫颈细胞自动分类模型。","authors":"Yue Zhang, Chunyu Ning, Wenjing Yang","doi":"10.1038/s41598-025-87953-1","DOIUrl":null,"url":null,"abstract":"<p><p>The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network. Firstly, the SE module is embedded in DenseNet121 to increase the model's focus on the nucleus region, which contains important diagnostic information, and reduce the focus on redundant information. Secondly, the sizes of the convolutional kernel and pooling window of the Stem layer are adjusted to adapt to the characteristics of the cervical cell images, so that the model can extract the local detailed information more effectively. Finally, the Atrous Dense Block (ADB) is constructed, and four ADB modules are integrated into DenseNet121 to enable the model to acquire global and local salient feature information. The accuracy of A2SDNet121 for two and seven-classification tasks on the Herlev dataset is 99.75% and 99.14%, respectively. The accuracy for two, three, and five-classification tasks on the SIPaKMeD dataset reaches 99.55%, 99.75% and 99.22%, respectively. Compared with other state-of-the-art algorithms, the A2SDNet121 model performs better in the multi-classification task of cervical cells, which can significantly improve the accuracy and efficiency of cervical cancer screening.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3240"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762993/pdf/","citationCount":"0","resultStr":"{\"title\":\"An automatic cervical cell classification model based on improved DenseNet121.\",\"authors\":\"Yue Zhang, Chunyu Ning, Wenjing Yang\",\"doi\":\"10.1038/s41598-025-87953-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network. Firstly, the SE module is embedded in DenseNet121 to increase the model's focus on the nucleus region, which contains important diagnostic information, and reduce the focus on redundant information. Secondly, the sizes of the convolutional kernel and pooling window of the Stem layer are adjusted to adapt to the characteristics of the cervical cell images, so that the model can extract the local detailed information more effectively. Finally, the Atrous Dense Block (ADB) is constructed, and four ADB modules are integrated into DenseNet121 to enable the model to acquire global and local salient feature information. The accuracy of A2SDNet121 for two and seven-classification tasks on the Herlev dataset is 99.75% and 99.14%, respectively. The accuracy for two, three, and five-classification tasks on the SIPaKMeD dataset reaches 99.55%, 99.75% and 99.22%, respectively. Compared with other state-of-the-art algorithms, the A2SDNet121 model performs better in the multi-classification task of cervical cells, which can significantly improve the accuracy and efficiency of cervical cancer screening.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"3240\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762993/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-87953-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87953-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
An automatic cervical cell classification model based on improved DenseNet121.
The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network. Firstly, the SE module is embedded in DenseNet121 to increase the model's focus on the nucleus region, which contains important diagnostic information, and reduce the focus on redundant information. Secondly, the sizes of the convolutional kernel and pooling window of the Stem layer are adjusted to adapt to the characteristics of the cervical cell images, so that the model can extract the local detailed information more effectively. Finally, the Atrous Dense Block (ADB) is constructed, and four ADB modules are integrated into DenseNet121 to enable the model to acquire global and local salient feature information. The accuracy of A2SDNet121 for two and seven-classification tasks on the Herlev dataset is 99.75% and 99.14%, respectively. The accuracy for two, three, and five-classification tasks on the SIPaKMeD dataset reaches 99.55%, 99.75% and 99.22%, respectively. Compared with other state-of-the-art algorithms, the A2SDNet121 model performs better in the multi-classification task of cervical cells, which can significantly improve the accuracy and efficiency of cervical cancer screening.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.