{"title":"HMGB1的Box A在肺癌中产生γH2AX相关DNA断裂中的作用。","authors":"Sirapat Settayanon, Pithi Chanvorachote, Apiwat Mutirangura","doi":"10.1038/s41598-025-87773-3","DOIUrl":null,"url":null,"abstract":"<p><p>An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs). Since the formation of HMGB1-produced DNA gaps in cancers may differ from normal cells, the outcome of introducing Box A into cancer cells may be different. We demonstrated that in lung cancer cells, γH2AX foci and histone modification associating DSBs were produced by Box A. We transfected Box A plasmid into lung cancer cell lines to overexpress Box A and evaluated the expression levels of γH2AX foci and other DNA damage response (DDR) signaling cascade markers, including ATM, ATR, and p53. Then, we demonstrated the downstream effects of DSBs on lung cancer, lowering cell proliferation, decreasing cell migration, and promoting apoptosis. Thus, Box A in lung cancer promoted the opposite outcome to normal cells by breaking cancer DNA.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3215"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762752/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.\",\"authors\":\"Sirapat Settayanon, Pithi Chanvorachote, Apiwat Mutirangura\",\"doi\":\"10.1038/s41598-025-87773-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs). Since the formation of HMGB1-produced DNA gaps in cancers may differ from normal cells, the outcome of introducing Box A into cancer cells may be different. We demonstrated that in lung cancer cells, γH2AX foci and histone modification associating DSBs were produced by Box A. We transfected Box A plasmid into lung cancer cell lines to overexpress Box A and evaluated the expression levels of γH2AX foci and other DNA damage response (DDR) signaling cascade markers, including ATM, ATR, and p53. Then, we demonstrated the downstream effects of DSBs on lung cancer, lowering cell proliferation, decreasing cell migration, and promoting apoptosis. Thus, Box A in lung cancer promoted the opposite outcome to normal cells by breaking cancer DNA.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"3215\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762752/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-87773-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87773-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.
An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs). Since the formation of HMGB1-produced DNA gaps in cancers may differ from normal cells, the outcome of introducing Box A into cancer cells may be different. We demonstrated that in lung cancer cells, γH2AX foci and histone modification associating DSBs were produced by Box A. We transfected Box A plasmid into lung cancer cell lines to overexpress Box A and evaluated the expression levels of γH2AX foci and other DNA damage response (DDR) signaling cascade markers, including ATM, ATR, and p53. Then, we demonstrated the downstream effects of DSBs on lung cancer, lowering cell proliferation, decreasing cell migration, and promoting apoptosis. Thus, Box A in lung cancer promoted the opposite outcome to normal cells by breaking cancer DNA.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.