Kara M Joseph, Anna K Boatman, James N Dodds, Kaylie I Kirkwood-Donelson, Jack P Ryan, Jian Zhang, Paul A Thiessen, Evan E Bolton, Alan Valdiviezo, Yelena Sapozhnikova, Ivan Rusyn, Emma L Schymanski, Erin S Baker
{"title":"用于改进全氟烷基和多氟烷基物质(PFAS)鉴定的多维文库。","authors":"Kara M Joseph, Anna K Boatman, James N Dodds, Kaylie I Kirkwood-Donelson, Jack P Ryan, Jian Zhang, Paul A Thiessen, Evan E Bolton, Alan Valdiviezo, Yelena Sapozhnikova, Ivan Rusyn, Emma L Schymanski, Erin S Baker","doi":"10.1038/s41597-024-04363-0","DOIUrl":null,"url":null,"abstract":"<p><p>As the occurrence of human diseases and conditions increase, questions continue to arise about their linkages to chemical exposure, especially for per-and polyfluoroalkyl substances (PFAS). Currently, many chemicals of concern have limited experimental information available for their use in analytical assessments. Here, we aim to increase this knowledge by providing the scientific community with multidimensional characteristics for 175 PFAS and their resulting 281 ion types. Using a platform coupling reversed-phase liquid chromatography (RPLC), electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI), drift tube ion mobility spectrometry (IMS), and mass spectrometry (MS), the retention times, collision cross section (CCS) values, and m/z ratios were determined for all analytes and assembled into an openly available multidimensional dataset. This information will provide the scientific community with essential characteristics to expand analytical assessments of PFAS and augment machine learning training sets for discovering new PFAS.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"150"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763048/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multidimensional library for the improved identification of per- and polyfluoroalkyl substances (PFAS).\",\"authors\":\"Kara M Joseph, Anna K Boatman, James N Dodds, Kaylie I Kirkwood-Donelson, Jack P Ryan, Jian Zhang, Paul A Thiessen, Evan E Bolton, Alan Valdiviezo, Yelena Sapozhnikova, Ivan Rusyn, Emma L Schymanski, Erin S Baker\",\"doi\":\"10.1038/s41597-024-04363-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the occurrence of human diseases and conditions increase, questions continue to arise about their linkages to chemical exposure, especially for per-and polyfluoroalkyl substances (PFAS). Currently, many chemicals of concern have limited experimental information available for their use in analytical assessments. Here, we aim to increase this knowledge by providing the scientific community with multidimensional characteristics for 175 PFAS and their resulting 281 ion types. Using a platform coupling reversed-phase liquid chromatography (RPLC), electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI), drift tube ion mobility spectrometry (IMS), and mass spectrometry (MS), the retention times, collision cross section (CCS) values, and m/z ratios were determined for all analytes and assembled into an openly available multidimensional dataset. This information will provide the scientific community with essential characteristics to expand analytical assessments of PFAS and augment machine learning training sets for discovering new PFAS.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"150\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763048/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04363-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04363-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Multidimensional library for the improved identification of per- and polyfluoroalkyl substances (PFAS).
As the occurrence of human diseases and conditions increase, questions continue to arise about their linkages to chemical exposure, especially for per-and polyfluoroalkyl substances (PFAS). Currently, many chemicals of concern have limited experimental information available for their use in analytical assessments. Here, we aim to increase this knowledge by providing the scientific community with multidimensional characteristics for 175 PFAS and their resulting 281 ion types. Using a platform coupling reversed-phase liquid chromatography (RPLC), electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI), drift tube ion mobility spectrometry (IMS), and mass spectrometry (MS), the retention times, collision cross section (CCS) values, and m/z ratios were determined for all analytes and assembled into an openly available multidimensional dataset. This information will provide the scientific community with essential characteristics to expand analytical assessments of PFAS and augment machine learning training sets for discovering new PFAS.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.