基于超快MRI的放射组学在乳腺癌分子亚型和组织学因素分类方面优于标准MRI:来自前瞻性研究的证据。

IF 9.7 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Radiologia Medica Pub Date : 2025-03-01 Epub Date: 2025-01-25 DOI:10.1007/s11547-025-01956-6
Juhyun Jeong, Sungwon Ham, Bo Kyoung Seo, Jeong Taek Lee, Shuncong Wang, Min Sun Bae, Kyu Ran Cho, Ok Hee Woo, Sung Eun Song, Hangseok Choi
{"title":"基于超快MRI的放射组学在乳腺癌分子亚型和组织学因素分类方面优于标准MRI:来自前瞻性研究的证据。","authors":"Juhyun Jeong, Sungwon Ham, Bo Kyoung Seo, Jeong Taek Lee, Shuncong Wang, Min Sun Bae, Kyu Ran Cho, Ok Hee Woo, Sung Eun Song, Hangseok Choi","doi":"10.1007/s11547-025-01956-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To compare the performance of ultrafast MRI with standard MRI in classifying histological factors and subtypes of invasive breast cancer among radiologists with varying experience.</p><p><strong>Methods: </strong>From October 2021 to November 2022, this prospective study enrolled 225 participants with 233 breast cancers before treatment (NCT06104189 at clinicaltrials.gov). Tumor segmentation on MRI was performed independently by two readers (R1, dedicated breast radiologist; R2, radiology resident). We extracted 1618 radiomic features and four kinetic features from ultrafast and standard images, respectively. Logistic regression algorithms were adopted for prediction modeling, following feature selection by the least absolute shrinkage and selection operator. The performance of predicting histological factors and subtypes was evaluated using the area under the receiver-operating characteristic curve (AUC). Performance differences between MRI methods and radiologists were assessed using the DeLong test.</p><p><strong>Results: </strong>Ultrafast MRI outperformed standard MRI in predicting HER2 status (AUCs [95% CI] of ultrafast MRI vs standard MRI; 0.87 [0.83-0.91] vs 0.77 [0.64-0.90] for R1 and 0.88 [0.83-0.91] vs 0.77 [0.69-0.84] for R2) (all P < 0.05). Both ultrafast MRI and standard MRI showed comparable performance in predicting hormone receptors. Ultrafast MRI exhibited superior performance to standard MRI in classifying subtypes. The classification of the luminal subtype for both readers, the HER2-overexpressed subtype for R2, and the triple-negative subtype for R1 was significantly better with ultrafast MRI (P < 0.05).</p><p><strong>Conclusion: </strong>Ultrafast MRI-based radiomics holds promise as a noninvasive imaging biomarker for classifying hormone receptors, HER2 status, and molecular subtypes compared to standard MRI, regardless of radiologist experience.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":"368-380"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903601/pdf/","citationCount":"0","resultStr":"{\"title\":\"Superior performance in classification of breast cancer molecular subtype and histological factors by radiomics based on ultrafast MRI over standard MRI: evidence from a prospective study.\",\"authors\":\"Juhyun Jeong, Sungwon Ham, Bo Kyoung Seo, Jeong Taek Lee, Shuncong Wang, Min Sun Bae, Kyu Ran Cho, Ok Hee Woo, Sung Eun Song, Hangseok Choi\",\"doi\":\"10.1007/s11547-025-01956-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To compare the performance of ultrafast MRI with standard MRI in classifying histological factors and subtypes of invasive breast cancer among radiologists with varying experience.</p><p><strong>Methods: </strong>From October 2021 to November 2022, this prospective study enrolled 225 participants with 233 breast cancers before treatment (NCT06104189 at clinicaltrials.gov). Tumor segmentation on MRI was performed independently by two readers (R1, dedicated breast radiologist; R2, radiology resident). We extracted 1618 radiomic features and four kinetic features from ultrafast and standard images, respectively. Logistic regression algorithms were adopted for prediction modeling, following feature selection by the least absolute shrinkage and selection operator. The performance of predicting histological factors and subtypes was evaluated using the area under the receiver-operating characteristic curve (AUC). Performance differences between MRI methods and radiologists were assessed using the DeLong test.</p><p><strong>Results: </strong>Ultrafast MRI outperformed standard MRI in predicting HER2 status (AUCs [95% CI] of ultrafast MRI vs standard MRI; 0.87 [0.83-0.91] vs 0.77 [0.64-0.90] for R1 and 0.88 [0.83-0.91] vs 0.77 [0.69-0.84] for R2) (all P < 0.05). Both ultrafast MRI and standard MRI showed comparable performance in predicting hormone receptors. Ultrafast MRI exhibited superior performance to standard MRI in classifying subtypes. The classification of the luminal subtype for both readers, the HER2-overexpressed subtype for R2, and the triple-negative subtype for R1 was significantly better with ultrafast MRI (P < 0.05).</p><p><strong>Conclusion: </strong>Ultrafast MRI-based radiomics holds promise as a noninvasive imaging biomarker for classifying hormone receptors, HER2 status, and molecular subtypes compared to standard MRI, regardless of radiologist experience.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"368-380\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903601/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-025-01956-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-01956-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:比较超快MRI与标准MRI在不同经验放射科医师中对浸润性乳腺癌的组织学因素和亚型的分类效果。方法:从2021年10月到2022年11月,这项前瞻性研究招募了225名参与者,其中有233名乳腺癌患者在治疗前(NCT06104189在clinicaltrials.gov)。MRI上的肿瘤分割由两位读者独立完成(R1,专门的乳腺放射科医生;R2,放射科住院医师)。我们分别从超快图像和标准图像中提取了1618个放射学特征和4个动力学特征。采用Logistic回归算法进行预测建模,然后采用最小绝对收缩和选择算子进行特征选择。使用受试者工作特征曲线下面积(AUC)评估预测组织学因素和亚型的性能。使用DeLong测试评估MRI方法和放射科医生之间的性能差异。结果:超快MRI在预测HER2状态方面优于标准MRI (auc [95% CI]);R1为0.87 [0.83-0.91]vs 0.77 [0.64-0.90], R2为0.88 [0.83-0.91]vs 0.77[0.69-0.84](均P)结论:与标准MRI相比,基于超快MRI的放射组学有望作为一种无创成像生物标志物,用于分类激素受体、HER2状态和分子亚型,无论放射科医生经验如何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superior performance in classification of breast cancer molecular subtype and histological factors by radiomics based on ultrafast MRI over standard MRI: evidence from a prospective study.

Purpose: To compare the performance of ultrafast MRI with standard MRI in classifying histological factors and subtypes of invasive breast cancer among radiologists with varying experience.

Methods: From October 2021 to November 2022, this prospective study enrolled 225 participants with 233 breast cancers before treatment (NCT06104189 at clinicaltrials.gov). Tumor segmentation on MRI was performed independently by two readers (R1, dedicated breast radiologist; R2, radiology resident). We extracted 1618 radiomic features and four kinetic features from ultrafast and standard images, respectively. Logistic regression algorithms were adopted for prediction modeling, following feature selection by the least absolute shrinkage and selection operator. The performance of predicting histological factors and subtypes was evaluated using the area under the receiver-operating characteristic curve (AUC). Performance differences between MRI methods and radiologists were assessed using the DeLong test.

Results: Ultrafast MRI outperformed standard MRI in predicting HER2 status (AUCs [95% CI] of ultrafast MRI vs standard MRI; 0.87 [0.83-0.91] vs 0.77 [0.64-0.90] for R1 and 0.88 [0.83-0.91] vs 0.77 [0.69-0.84] for R2) (all P < 0.05). Both ultrafast MRI and standard MRI showed comparable performance in predicting hormone receptors. Ultrafast MRI exhibited superior performance to standard MRI in classifying subtypes. The classification of the luminal subtype for both readers, the HER2-overexpressed subtype for R2, and the triple-negative subtype for R1 was significantly better with ultrafast MRI (P < 0.05).

Conclusion: Ultrafast MRI-based radiomics holds promise as a noninvasive imaging biomarker for classifying hormone receptors, HER2 status, and molecular subtypes compared to standard MRI, regardless of radiologist experience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiologia Medica
Radiologia Medica 医学-核医学
CiteScore
14.10
自引率
7.90%
发文量
133
审稿时长
4-8 weeks
期刊介绍: Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信