Qian Wang, Liang Sun, Lu Liu, Teng Ma, Zhong Li, Kun Zhang, Qiang Huang
{"title":"改良股骨近端钉治疗股骨转子间逆倾斜骨折的生物力学评价。","authors":"Qian Wang, Liang Sun, Lu Liu, Teng Ma, Zhong Li, Kun Zhang, Qiang Huang","doi":"10.1038/s41598-025-87951-3","DOIUrl":null,"url":null,"abstract":"<p><p>The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling. An AO/OTA 31-A3.1 ROIF model was established via Mimics software. Three implants were depicted and assembled on the ROIF models. The axial, bending, and torsion loads were simulated to test stress and displacement of three fixation models. Compared to the PFNA and InterTAN models, the MPFN model had more dispersed stress distribution under axial loads of 2,100 N. The MPFN showed lower von Mises stress on bones compared with that of PFNA and InterTAN in axial loads. In term of maximum displacement, the MPFN had a 12.6% reduction compared to the PFNA model in axial load case. In bending and torsion loads, the MPFN model also demonstrated better biomechanical properties than the PFNA and InterTAN models. The modified proximal femoral nail presented the best biomechanical performance, followed by the InterTAN nail, and the PFNA for fixing reverse obliquity intertrochanteric fractures. The MPFN has the potential to be a promising device for patients with ROIFs.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3261"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763255/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biomechanical evaluation of the modified proximal femoral nail for the treatment of reverse obliquity intertrochanteric fractures.\",\"authors\":\"Qian Wang, Liang Sun, Lu Liu, Teng Ma, Zhong Li, Kun Zhang, Qiang Huang\",\"doi\":\"10.1038/s41598-025-87951-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling. An AO/OTA 31-A3.1 ROIF model was established via Mimics software. Three implants were depicted and assembled on the ROIF models. The axial, bending, and torsion loads were simulated to test stress and displacement of three fixation models. Compared to the PFNA and InterTAN models, the MPFN model had more dispersed stress distribution under axial loads of 2,100 N. The MPFN showed lower von Mises stress on bones compared with that of PFNA and InterTAN in axial loads. In term of maximum displacement, the MPFN had a 12.6% reduction compared to the PFNA model in axial load case. In bending and torsion loads, the MPFN model also demonstrated better biomechanical properties than the PFNA and InterTAN models. The modified proximal femoral nail presented the best biomechanical performance, followed by the InterTAN nail, and the PFNA for fixing reverse obliquity intertrochanteric fractures. The MPFN has the potential to be a promising device for patients with ROIFs.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"3261\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763255/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-87951-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87951-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Biomechanical evaluation of the modified proximal femoral nail for the treatment of reverse obliquity intertrochanteric fractures.
The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling. An AO/OTA 31-A3.1 ROIF model was established via Mimics software. Three implants were depicted and assembled on the ROIF models. The axial, bending, and torsion loads were simulated to test stress and displacement of three fixation models. Compared to the PFNA and InterTAN models, the MPFN model had more dispersed stress distribution under axial loads of 2,100 N. The MPFN showed lower von Mises stress on bones compared with that of PFNA and InterTAN in axial loads. In term of maximum displacement, the MPFN had a 12.6% reduction compared to the PFNA model in axial load case. In bending and torsion loads, the MPFN model also demonstrated better biomechanical properties than the PFNA and InterTAN models. The modified proximal femoral nail presented the best biomechanical performance, followed by the InterTAN nail, and the PFNA for fixing reverse obliquity intertrochanteric fractures. The MPFN has the potential to be a promising device for patients with ROIFs.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.