二氧化钛纳米颗粒。物理化学特性和细胞毒性风险。

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Filip Kunc , Xiaomei Du , Andre Zborowski , Linda J. Johnston , David C. Kennedy
{"title":"二氧化钛纳米颗粒。物理化学特性和细胞毒性风险。","authors":"Filip Kunc ,&nbsp;Xiaomei Du ,&nbsp;Andre Zborowski ,&nbsp;Linda J. Johnston ,&nbsp;David C. Kennedy","doi":"10.1016/j.impact.2025.100543","DOIUrl":null,"url":null,"abstract":"<div><div>Titanium dioxide (TiO<sub>2</sub>) nanoparticles (NPs) are incorporated into numerous consumer products yet data as to potential adverse health effects remains inconclusive. In this paper we physically characterize 16 nanoforms of TiO<sub>2</sub> from different manufacturers of different size, crystalline structure and surface chemistry. Physical measurements of the particles were performed and compared with those provided by manufacturers revealing several discrepancies. We then examined the biological effects of these particles in cell culture in 3 commonly used cell lines for testing materials. We were unable to validate that anatase particles are more cytotoxic than rutile particles as has been reported, and generally found that the particles produced few effects and no significant production of reactive oxygen species under the conditions used. While some particles do exhibit a dose dependent cytotoxicity that increases over time in some cell lines, the effects were not consistent between cell lines and do not appear to be linked to crystalline structure or any of the specific physical characteristics that were measured including, size, charge and surface composition, nor a correlation with the production of reactive oxygen species.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"37 ","pages":"Article 100543"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Titanium dioxide nanoparticles - physicochemical characterization and cytotoxic risk\",\"authors\":\"Filip Kunc ,&nbsp;Xiaomei Du ,&nbsp;Andre Zborowski ,&nbsp;Linda J. Johnston ,&nbsp;David C. Kennedy\",\"doi\":\"10.1016/j.impact.2025.100543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Titanium dioxide (TiO<sub>2</sub>) nanoparticles (NPs) are incorporated into numerous consumer products yet data as to potential adverse health effects remains inconclusive. In this paper we physically characterize 16 nanoforms of TiO<sub>2</sub> from different manufacturers of different size, crystalline structure and surface chemistry. Physical measurements of the particles were performed and compared with those provided by manufacturers revealing several discrepancies. We then examined the biological effects of these particles in cell culture in 3 commonly used cell lines for testing materials. We were unable to validate that anatase particles are more cytotoxic than rutile particles as has been reported, and generally found that the particles produced few effects and no significant production of reactive oxygen species under the conditions used. While some particles do exhibit a dose dependent cytotoxicity that increases over time in some cell lines, the effects were not consistent between cell lines and do not appear to be linked to crystalline structure or any of the specific physical characteristics that were measured including, size, charge and surface composition, nor a correlation with the production of reactive oxygen species.</div></div>\",\"PeriodicalId\":18786,\"journal\":{\"name\":\"NanoImpact\",\"volume\":\"37 \",\"pages\":\"Article 100543\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoImpact\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452074825000035\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074825000035","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

二氧化钛(TiO2)纳米颗粒(NPs)被纳入许多消费品中,但关于其潜在不利健康影响的数据仍不确定。本文对不同厂家生产的16种不同尺寸、晶体结构和表面化学性质的纳米TiO2进行了物理表征。对颗粒进行了物理测量,并与制造商提供的数据进行了比较,发现了一些差异。然后,我们在3种常用的细胞系中检测了这些颗粒在细胞培养中的生物学效应。我们无法证实锐钛矿颗粒比金红石颗粒具有更大的细胞毒性,并且通常发现在所使用的条件下,锐钛矿颗粒产生的效果很少,并且没有显著的活性氧产生。虽然某些颗粒确实表现出剂量依赖性的细胞毒性,并且在某些细胞系中随着时间的推移而增加,但这些影响在细胞系之间并不一致,并且似乎与晶体结构或测量的任何特定物理特性(包括大小、电荷和表面组成)无关,也与活性氧的产生无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Titanium dioxide nanoparticles - physicochemical characterization and cytotoxic risk
Titanium dioxide (TiO2) nanoparticles (NPs) are incorporated into numerous consumer products yet data as to potential adverse health effects remains inconclusive. In this paper we physically characterize 16 nanoforms of TiO2 from different manufacturers of different size, crystalline structure and surface chemistry. Physical measurements of the particles were performed and compared with those provided by manufacturers revealing several discrepancies. We then examined the biological effects of these particles in cell culture in 3 commonly used cell lines for testing materials. We were unable to validate that anatase particles are more cytotoxic than rutile particles as has been reported, and generally found that the particles produced few effects and no significant production of reactive oxygen species under the conditions used. While some particles do exhibit a dose dependent cytotoxicity that increases over time in some cell lines, the effects were not consistent between cell lines and do not appear to be linked to crystalline structure or any of the specific physical characteristics that were measured including, size, charge and surface composition, nor a correlation with the production of reactive oxygen species.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NanoImpact
NanoImpact Social Sciences-Safety Research
CiteScore
11.00
自引率
6.10%
发文量
69
审稿时长
23 days
期刊介绍: NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信