典型的 NLR 可识别结构一致的效应物家族,使植物对适应性和非适应性疫霉菌病原体产生抗性。

IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Plant Pub Date : 2025-03-03 Epub Date: 2025-01-24 DOI:10.1016/j.molp.2025.01.018
Xiaohua Dong, Xu Lu, Hai Zhu, Zhengxue Zhu, Peiyun Ji, Xianglan Li, Tianli Li, Xiong Zhang, Gan Ai, Daolong Dou
{"title":"典型的 NLR 可识别结构一致的效应物家族,使植物对适应性和非适应性疫霉菌病原体产生抗性。","authors":"Xiaohua Dong, Xu Lu, Hai Zhu, Zhengxue Zhu, Peiyun Ji, Xianglan Li, Tianli Li, Xiong Zhang, Gan Ai, Daolong Dou","doi":"10.1016/j.molp.2025.01.018","DOIUrl":null,"url":null,"abstract":"<p><p>Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the underlying molecular mechanisms remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of Nicotiana benthamiana (Nb), as a model and identified an RXLR effector that determines Nb incompatibility to Ps. Knockout of this RXLR effector in Ps enables successful infection of Nb, leading us to name it AvrNb (Avirulence gene in Nb). A systematic screening of Nb NLR genes further revealed that NbPrf, previously reported to be a receptor of bacterial avirulence proteins, is the NLR protein responsible for mediating AvrNb recognition and initiating the hypersensitive response (HR). Mutation in NbPrf makes Nb completely compatible to Ps. We found that AvrNb is structurally conserved among multiple Phytophthora pathogens, and its homologs also induce NbPrf-dependent HR. Remarkably, further inoculation assay showed that NbPrf is also involved in plant immunity to two adapted Phytophthora pathogens, Phytophthora infestans and Phytophthora capsici. Our findings suggest that NbPrf represents a promising resource for breeding resistance to Phytophthora pathogens and implicate that the conserved effectors present in both adapted and non-adapted pathogens may provide sufficient selective pressure to maintain the remarkably durable incompatibility between plants and non-adapted pathogens.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"485-500"},"PeriodicalIF":24.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A typical NLR recognizes a family of structurally conserved effectors to confer plant resistance against adapted and non-adapted Phytophthora pathogens.\",\"authors\":\"Xiaohua Dong, Xu Lu, Hai Zhu, Zhengxue Zhu, Peiyun Ji, Xianglan Li, Tianli Li, Xiong Zhang, Gan Ai, Daolong Dou\",\"doi\":\"10.1016/j.molp.2025.01.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the underlying molecular mechanisms remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of Nicotiana benthamiana (Nb), as a model and identified an RXLR effector that determines Nb incompatibility to Ps. Knockout of this RXLR effector in Ps enables successful infection of Nb, leading us to name it AvrNb (Avirulence gene in Nb). A systematic screening of Nb NLR genes further revealed that NbPrf, previously reported to be a receptor of bacterial avirulence proteins, is the NLR protein responsible for mediating AvrNb recognition and initiating the hypersensitive response (HR). Mutation in NbPrf makes Nb completely compatible to Ps. We found that AvrNb is structurally conserved among multiple Phytophthora pathogens, and its homologs also induce NbPrf-dependent HR. Remarkably, further inoculation assay showed that NbPrf is also involved in plant immunity to two adapted Phytophthora pathogens, Phytophthora infestans and Phytophthora capsici. Our findings suggest that NbPrf represents a promising resource for breeding resistance to Phytophthora pathogens and implicate that the conserved effectors present in both adapted and non-adapted pathogens may provide sufficient selective pressure to maintain the remarkably durable incompatibility between plants and non-adapted pathogens.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"485-500\"},\"PeriodicalIF\":24.1000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2025.01.018\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.01.018","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在自然界中,植物对非适应性病原体具有非常持久的抵抗力。然而,这种抗性的分子机制仍然知之甚少,并且不清楚在宿主和非适应性病原体之间没有共同进化的情况下,抗性是如何维持的。在本研究中,我们以benthamiana (Nb)的非适应性病原菌sojae (Phytophthora sojae, Ps)为模型,发现了一个决定Nb与Ps不相容的RXLR效应,在Ps中敲除该RXLR效应使Nb成功感染,并将其命名为AvrNb (Nb中的无毒基因)。对Nb NLR基因的系统筛选进一步表明,NbPrf是介导AvrNb识别并启动超敏反应(hypersensitive response, HR)的NLR蛋白,此前报道NbPrf是细菌无毒蛋白的受体。NbPrf的突变使Nb与Ps完全兼容。我们发现AvrNb在多种疫霉病原菌中是保守的,这些同源物也诱导NbPrf依赖性HR。值得注意的是,进一步的接种试验表明,NbPrf参与了植物对两种适应型疫霉病原菌(P. infestans和P. capsici)的免疫。我们的研究结果表明,NbPrf代表了一种很有希望的抗疫霉病原体的育种资源,并且还表明,在适应和非适应病原体中存在的保守效应物可能提供足够的选择压力,以维持植物与非适应病原体之间显著持久的不亲和性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A typical NLR recognizes a family of structurally conserved effectors to confer plant resistance against adapted and non-adapted Phytophthora pathogens.

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the underlying molecular mechanisms remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of Nicotiana benthamiana (Nb), as a model and identified an RXLR effector that determines Nb incompatibility to Ps. Knockout of this RXLR effector in Ps enables successful infection of Nb, leading us to name it AvrNb (Avirulence gene in Nb). A systematic screening of Nb NLR genes further revealed that NbPrf, previously reported to be a receptor of bacterial avirulence proteins, is the NLR protein responsible for mediating AvrNb recognition and initiating the hypersensitive response (HR). Mutation in NbPrf makes Nb completely compatible to Ps. We found that AvrNb is structurally conserved among multiple Phytophthora pathogens, and its homologs also induce NbPrf-dependent HR. Remarkably, further inoculation assay showed that NbPrf is also involved in plant immunity to two adapted Phytophthora pathogens, Phytophthora infestans and Phytophthora capsici. Our findings suggest that NbPrf represents a promising resource for breeding resistance to Phytophthora pathogens and implicate that the conserved effectors present in both adapted and non-adapted pathogens may provide sufficient selective pressure to maintain the remarkably durable incompatibility between plants and non-adapted pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信