酶降解处理对百合多糖的理化性质、抗氧化能力和益生菌活性的影响

IF 4.7 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Foods Pub Date : 2025-01-14 DOI:10.3390/foods14020246
Kaitao Peng, Yujie Zhang, Qi Zhang, Yunpu Wang, Yuhuan Liu, Xian Cui
{"title":"酶降解处理对百合多糖的理化性质、抗氧化能力和益生菌活性的影响","authors":"Kaitao Peng, Yujie Zhang, Qi Zhang, Yunpu Wang, Yuhuan Liu, Xian Cui","doi":"10.3390/foods14020246","DOIUrl":null,"url":null,"abstract":"<p><p>In order to overcome the bioavailability limitation of <i>Lilium</i> polysaccharide (LPS) caused by its high molecular weight and complex structure, two low-molecular-weight degraded polysaccharides, namely G-LPS(8) and G-LPS(16), were prepared through enzymatic degradation. The molecular weight of LPS was significantly reduced by enzymolysis, leading to increased exposure of internal functional groups and altering the molar ratio of its constituent monosaccharides. The results of antioxidant experiments showed that enzymatic hydrolysis had the potential to enhance the antioxidant performance of LPS. <i>In vitro</i> fermentation experiments revealed that LPS and its derivatives exerted different prebiotic effects on intestinal microbial communities. Specifically, LPS mainly inhibited the growth of harmful bacteria such as Fusobacterium, while G-LPS(8) and G-LPS(16) tended to promote the growth of beneficial bacteria like <i>Megamonas</i>, <i>Bacteroides</i>, and <i>Parabacteroides</i>. Metabolomic analysis revealed that LPSs with varying molecular weights exerted comparable promoting effects on multiple amino acid and carbohydrate metabolic pathways. Importantly, with the reduction in molecular weight, G-LPS(16) also particularly stimulated sphingolipid metabolism, nucleotide metabolism, as well as ascorbic acid and uronic acid metabolism, leading to the significant increase in specific metabolites such as sphingosine. Therefore, this study suggests that properly degraded LPS components have greater potential as a prebiotic for improving gut health.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765260/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of Enzymatic Degradation Treatment on Physicochemical Properties, Antioxidant Capacity, and Prebiotic Activity of Lilium Polysaccharides.\",\"authors\":\"Kaitao Peng, Yujie Zhang, Qi Zhang, Yunpu Wang, Yuhuan Liu, Xian Cui\",\"doi\":\"10.3390/foods14020246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to overcome the bioavailability limitation of <i>Lilium</i> polysaccharide (LPS) caused by its high molecular weight and complex structure, two low-molecular-weight degraded polysaccharides, namely G-LPS(8) and G-LPS(16), were prepared through enzymatic degradation. The molecular weight of LPS was significantly reduced by enzymolysis, leading to increased exposure of internal functional groups and altering the molar ratio of its constituent monosaccharides. The results of antioxidant experiments showed that enzymatic hydrolysis had the potential to enhance the antioxidant performance of LPS. <i>In vitro</i> fermentation experiments revealed that LPS and its derivatives exerted different prebiotic effects on intestinal microbial communities. Specifically, LPS mainly inhibited the growth of harmful bacteria such as Fusobacterium, while G-LPS(8) and G-LPS(16) tended to promote the growth of beneficial bacteria like <i>Megamonas</i>, <i>Bacteroides</i>, and <i>Parabacteroides</i>. Metabolomic analysis revealed that LPSs with varying molecular weights exerted comparable promoting effects on multiple amino acid and carbohydrate metabolic pathways. Importantly, with the reduction in molecular weight, G-LPS(16) also particularly stimulated sphingolipid metabolism, nucleotide metabolism, as well as ascorbic acid and uronic acid metabolism, leading to the significant increase in specific metabolites such as sphingosine. Therefore, this study suggests that properly degraded LPS components have greater potential as a prebiotic for improving gut health.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765260/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods14020246\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14020246","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Enzymatic Degradation Treatment on Physicochemical Properties, Antioxidant Capacity, and Prebiotic Activity of Lilium Polysaccharides.

In order to overcome the bioavailability limitation of Lilium polysaccharide (LPS) caused by its high molecular weight and complex structure, two low-molecular-weight degraded polysaccharides, namely G-LPS(8) and G-LPS(16), were prepared through enzymatic degradation. The molecular weight of LPS was significantly reduced by enzymolysis, leading to increased exposure of internal functional groups and altering the molar ratio of its constituent monosaccharides. The results of antioxidant experiments showed that enzymatic hydrolysis had the potential to enhance the antioxidant performance of LPS. In vitro fermentation experiments revealed that LPS and its derivatives exerted different prebiotic effects on intestinal microbial communities. Specifically, LPS mainly inhibited the growth of harmful bacteria such as Fusobacterium, while G-LPS(8) and G-LPS(16) tended to promote the growth of beneficial bacteria like Megamonas, Bacteroides, and Parabacteroides. Metabolomic analysis revealed that LPSs with varying molecular weights exerted comparable promoting effects on multiple amino acid and carbohydrate metabolic pathways. Importantly, with the reduction in molecular weight, G-LPS(16) also particularly stimulated sphingolipid metabolism, nucleotide metabolism, as well as ascorbic acid and uronic acid metabolism, leading to the significant increase in specific metabolites such as sphingosine. Therefore, this study suggests that properly degraded LPS components have greater potential as a prebiotic for improving gut health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foods
Foods Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
15.40%
发文量
3516
审稿时长
15.83 days
期刊介绍: Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Ÿ manuscripts regarding research proposals and research ideas will be particularly welcomed Ÿ electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material Ÿ we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信