Oluwatoyin O Sangokunle, Sarah G Corwin, Bruce R Hamaker
{"title":"纯化脉冲淀粉的特性和体外消化动力学:对面包配方的影响","authors":"Oluwatoyin O Sangokunle, Sarah G Corwin, Bruce R Hamaker","doi":"10.3390/foods14020328","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the contribution of pulse starches (PSs) to the slowly digestible starch (SDS) properties observed in pulses. Purified pulse starches from 17 commonly consumed pulses were examined, focusing on their digestion kinetics using a pancreatic alpha-amylase (PAA) and rat intestinal acetone powder (RIAP) mixture. Chickpea starch, exhibiting a slow digestibility profile, was incorporated as an ingredient to confer slow digestibility to refined wheat flour bread. Our findings reveal that some PSs exhibited low digestibility when gelatinized (100 °C, 30 min) and retrograded (7 days, 4 °C). Rapid retrogradation was observed in starch from chickpeas, lentils, field peas, adzuki beans, navy beans, large lima beans, and great northern beans. The incorporation of chickpea starch into fortified bread significantly improved its slow digestibility properties. This study reveals the potential of pulse starch as a promising functional ingredient for baked products, related to the faster retrogradation of many pulse-sourced starches. These findings contribute valuable insights into the slow digestibility attributes of pulse starches for developing food products with enhanced nutritional profiles.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765446/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization and In Vitro Digestion Kinetics of Purified Pulse Starches: Implications on Bread Formulation.\",\"authors\":\"Oluwatoyin O Sangokunle, Sarah G Corwin, Bruce R Hamaker\",\"doi\":\"10.3390/foods14020328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the contribution of pulse starches (PSs) to the slowly digestible starch (SDS) properties observed in pulses. Purified pulse starches from 17 commonly consumed pulses were examined, focusing on their digestion kinetics using a pancreatic alpha-amylase (PAA) and rat intestinal acetone powder (RIAP) mixture. Chickpea starch, exhibiting a slow digestibility profile, was incorporated as an ingredient to confer slow digestibility to refined wheat flour bread. Our findings reveal that some PSs exhibited low digestibility when gelatinized (100 °C, 30 min) and retrograded (7 days, 4 °C). Rapid retrogradation was observed in starch from chickpeas, lentils, field peas, adzuki beans, navy beans, large lima beans, and great northern beans. The incorporation of chickpea starch into fortified bread significantly improved its slow digestibility properties. This study reveals the potential of pulse starch as a promising functional ingredient for baked products, related to the faster retrogradation of many pulse-sourced starches. These findings contribute valuable insights into the slow digestibility attributes of pulse starches for developing food products with enhanced nutritional profiles.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765446/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods14020328\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14020328","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Characterization and In Vitro Digestion Kinetics of Purified Pulse Starches: Implications on Bread Formulation.
This study investigated the contribution of pulse starches (PSs) to the slowly digestible starch (SDS) properties observed in pulses. Purified pulse starches from 17 commonly consumed pulses were examined, focusing on their digestion kinetics using a pancreatic alpha-amylase (PAA) and rat intestinal acetone powder (RIAP) mixture. Chickpea starch, exhibiting a slow digestibility profile, was incorporated as an ingredient to confer slow digestibility to refined wheat flour bread. Our findings reveal that some PSs exhibited low digestibility when gelatinized (100 °C, 30 min) and retrograded (7 days, 4 °C). Rapid retrogradation was observed in starch from chickpeas, lentils, field peas, adzuki beans, navy beans, large lima beans, and great northern beans. The incorporation of chickpea starch into fortified bread significantly improved its slow digestibility properties. This study reveals the potential of pulse starch as a promising functional ingredient for baked products, related to the faster retrogradation of many pulse-sourced starches. These findings contribute valuable insights into the slow digestibility attributes of pulse starches for developing food products with enhanced nutritional profiles.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds