抑制METTL3表达可减弱基质刚度诱导的阴道成纤维细胞向肌成纤维细胞的分化和盆腔器官脱垂中细胞外基质的异常调节。

IF 7.5 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Chinese Medical Journal Pub Date : 2025-04-05 Epub Date: 2025-01-26 DOI:10.1097/CM9.0000000000003409
Xiuqi Wang, Tao Guo, Xiaogang Li, Zhao Tian, Linru Fu, Zhijing Sun
{"title":"抑制METTL3表达可减弱基质刚度诱导的阴道成纤维细胞向肌成纤维细胞的分化和盆腔器官脱垂中细胞外基质的异常调节。","authors":"Xiuqi Wang, Tao Guo, Xiaogang Li, Zhao Tian, Linru Fu, Zhijing Sun","doi":"10.1097/CM9.0000000000003409","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.</p><p><strong>Methods: </strong>Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts. METTL3 small interfering RNA and an overexpression vector were transfected into vaginal fibroblasts to evaluate the effects of METTL3 silencing and overexpression on matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal modulation of the ECM. Both procedures were detected by 5-ethynyl-2'-deoxyuridine (EdU) staining, Western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), and immunofluorescence (IF).</p><p><strong>Results: </strong>Vaginal fibroblasts from POP patients exhibited increased proliferation ability, increased expression of α-smooth muscle actin (α-SMA), decreased expression of collagen I/III, and significantly decreased expression of tissue inhibitors of matrix metalloproteinases (TIMPs) in the stiff matrix ( P <0.05). Compared with those from non-POP patients, vaginal wall tissues from POP patients demonstrated a significant increase in METTL3 content ( P <0.05). However, silencing METTL3 expression in vaginal fibroblasts with high ECM stiffness resulted in decreased proliferation ability, decreased α-SMA expression, an increased ratio of collagen I/III, and increased TIMP1 and TIMP2 expression. Conversely, METTL3 overexpression significantly promoted the process of increased proliferation ability, increased α-SMA expression, decreased ratio of collagen I/III and decreased TIMP1 and TIMP2 expression in the soft matrix ( P <0.05).</p><p><strong>Conclusions: </strong>Elevated ECM stiffness can promote excessive proliferation, differentiation, and abnormal ECM modulation, and the expression of METTL3 plays an important role in alleviating or aggravating matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal ECM modulation.</p>","PeriodicalId":10183,"journal":{"name":"Chinese Medical Journal","volume":" ","pages":"859-867"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970812/pdf/","citationCount":"0","resultStr":"{\"title\":\"Suppression of METTL3 expression attenuated matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal modulation of the extracellular matrix in pelvic organ prolapse.\",\"authors\":\"Xiuqi Wang, Tao Guo, Xiaogang Li, Zhao Tian, Linru Fu, Zhijing Sun\",\"doi\":\"10.1097/CM9.0000000000003409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.</p><p><strong>Methods: </strong>Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts. METTL3 small interfering RNA and an overexpression vector were transfected into vaginal fibroblasts to evaluate the effects of METTL3 silencing and overexpression on matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal modulation of the ECM. Both procedures were detected by 5-ethynyl-2'-deoxyuridine (EdU) staining, Western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), and immunofluorescence (IF).</p><p><strong>Results: </strong>Vaginal fibroblasts from POP patients exhibited increased proliferation ability, increased expression of α-smooth muscle actin (α-SMA), decreased expression of collagen I/III, and significantly decreased expression of tissue inhibitors of matrix metalloproteinases (TIMPs) in the stiff matrix ( P <0.05). Compared with those from non-POP patients, vaginal wall tissues from POP patients demonstrated a significant increase in METTL3 content ( P <0.05). However, silencing METTL3 expression in vaginal fibroblasts with high ECM stiffness resulted in decreased proliferation ability, decreased α-SMA expression, an increased ratio of collagen I/III, and increased TIMP1 and TIMP2 expression. Conversely, METTL3 overexpression significantly promoted the process of increased proliferation ability, increased α-SMA expression, decreased ratio of collagen I/III and decreased TIMP1 and TIMP2 expression in the soft matrix ( P <0.05).</p><p><strong>Conclusions: </strong>Elevated ECM stiffness can promote excessive proliferation, differentiation, and abnormal ECM modulation, and the expression of METTL3 plays an important role in alleviating or aggravating matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal ECM modulation.</p>\",\"PeriodicalId\":10183,\"journal\":{\"name\":\"Chinese Medical Journal\",\"volume\":\" \",\"pages\":\"859-867\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970812/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Medical Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CM9.0000000000003409\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CM9.0000000000003409","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:阴道壁结缔组织纤维化在盆腔器官脱垂(POP)中占主导地位,其特征是成纤维细胞过度向肌成纤维细胞分化和细胞外基质(ECM)异常沉积。我们的研究旨在探讨ECM硬度对阴道成纤维细胞的影响,并探讨甲基转移酶3 (METTL3)在POP发展中的作用。方法:应用聚丙烯酰胺水凝胶构建变刚度ECM微环境,评估ECM刚度对阴道成纤维细胞ECM成分增殖、分化和表达的影响。将METTL3小干扰RNA和过表达载体转染阴道成纤维细胞,观察METTL3沉默和过表达对基质刚度诱导的阴道成纤维细胞向肌成纤维细胞分化和ECM异常调节的影响。两种方法均采用5-乙基-2'-脱氧尿嘧啶(EdU)染色、Western blotting (WB)、实时定量聚合酶链反应(RT-qPCR)和免疫荧光(IF)检测。结果:POP患者阴道成纤维细胞增殖能力增强,α-平滑肌肌动蛋白(α-SMA)表达增加,I/III胶原表达减少,僵硬基质中基质金属蛋白酶组织抑制剂(TIMPs)表达显著降低(P)。ECM刚度升高可促进过度增殖、分化和异常ECM调节,而METTL3的表达在缓解或加重基质刚度诱导的阴道成纤维细胞向肌成纤维细胞分化和异常ECM调节中起重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suppression of METTL3 expression attenuated matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal modulation of the extracellular matrix in pelvic organ prolapse.

Background: Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.

Methods: Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts. METTL3 small interfering RNA and an overexpression vector were transfected into vaginal fibroblasts to evaluate the effects of METTL3 silencing and overexpression on matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal modulation of the ECM. Both procedures were detected by 5-ethynyl-2'-deoxyuridine (EdU) staining, Western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), and immunofluorescence (IF).

Results: Vaginal fibroblasts from POP patients exhibited increased proliferation ability, increased expression of α-smooth muscle actin (α-SMA), decreased expression of collagen I/III, and significantly decreased expression of tissue inhibitors of matrix metalloproteinases (TIMPs) in the stiff matrix ( P <0.05). Compared with those from non-POP patients, vaginal wall tissues from POP patients demonstrated a significant increase in METTL3 content ( P <0.05). However, silencing METTL3 expression in vaginal fibroblasts with high ECM stiffness resulted in decreased proliferation ability, decreased α-SMA expression, an increased ratio of collagen I/III, and increased TIMP1 and TIMP2 expression. Conversely, METTL3 overexpression significantly promoted the process of increased proliferation ability, increased α-SMA expression, decreased ratio of collagen I/III and decreased TIMP1 and TIMP2 expression in the soft matrix ( P <0.05).

Conclusions: Elevated ECM stiffness can promote excessive proliferation, differentiation, and abnormal ECM modulation, and the expression of METTL3 plays an important role in alleviating or aggravating matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal ECM modulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Medical Journal
Chinese Medical Journal 医学-医学:内科
CiteScore
9.80
自引率
4.90%
发文量
19245
审稿时长
6 months
期刊介绍: The Chinese Medical Journal (CMJ) is published semimonthly in English by the Chinese Medical Association, and is a peer reviewed general medical journal for all doctors, researchers, and health workers regardless of their medical specialty or type of employment. Established in 1887, it is the oldest medical periodical in China and is distributed worldwide. The journal functions as a window into China’s medical sciences and reflects the advances and progress in China’s medical sciences and technology. It serves the objective of international academic exchange. The journal includes Original Articles, Editorial, Review Articles, Medical Progress, Brief Reports, Case Reports, Viewpoint, Clinical Exchange, Letter,and News,etc. CMJ is abstracted or indexed in many databases including Biological Abstracts, Chemical Abstracts, Index Medicus/Medline, Science Citation Index (SCI), Current Contents, Cancerlit, Health Plan & Administration, Embase, Social Scisearch, Aidsline, Toxline, Biocommercial Abstracts, Arts and Humanities Search, Nuclear Science Abstracts, Water Resources Abstracts, Cab Abstracts, Occupation Safety & Health, etc. In 2007, the impact factor of the journal by SCI is 0.636, and the total citation is 2315.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信