评估 Microsoft Copilot、GPT-4 和 Google Gemini 在眼科方面的性能。

IF 3.3 4区 医学 Q1 OPHTHALMOLOGY
Meziane Silhadi, Wissam B Nassrallah, David Mikhail, Daniel Milad, Mona Harissi-Dagher
{"title":"评估 Microsoft Copilot、GPT-4 和 Google Gemini 在眼科方面的性能。","authors":"Meziane Silhadi, Wissam B Nassrallah, David Mikhail, Daniel Milad, Mona Harissi-Dagher","doi":"10.1016/j.jcjo.2025.01.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the performance of large language models (LLMs), specifically Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced), in answering ophthalmological questions and assessing the impact of prompting techniques on their accuracy.</p><p><strong>Design: </strong>Prospective qualitative study.</p><p><strong>Participants: </strong>Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced).</p><p><strong>Methods: </strong>A total of 300 ophthalmological questions from StatPearls were tested, covering a range of subspecialties and image-based tasks. Each question was evaluated using 2 prompting techniques: zero-shot forced prompting (prompt 1) and combined role-based and zero-shot plan-and-solve+ prompting (prompt 2).</p><p><strong>Results: </strong>With zero-shot forced prompting, GPT-4o demonstrated significantly superior overall performance, correctly answering 72.3% of questions and outperforming all other models, including Copilot (53.7%), GPT-4o mini (62.0%), Gemini (54.3%), and Gemini Advanced (62.0%) (p < 0.0001). Both Copilot and GPT-4o showed notable improvements with Prompt 2 over Prompt 1, elevating Copilot's accuracy from the lowest (53.7%) to the second highest (72.3%) among the evaluated LLMs.</p><p><strong>Conclusions: </strong>While newer iterations of LLMs, such as GPT-4o and Gemini Advanced, outperformed their less advanced counterparts (GPT-4o mini and Gemini), this study emphasizes the need for caution in clinical applications of these models. The choice of prompting techniques significantly influences performance, highlighting the necessity for further research to refine LLMs capabilities, particularly in visual data interpretation, to ensure their safe integration into medical practice.</p>","PeriodicalId":9606,"journal":{"name":"Canadian journal of ophthalmology. Journal canadien d'ophtalmologie","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the performance of Microsoft Copilot, GPT-4 and Google Gemini in ophthalmology.\",\"authors\":\"Meziane Silhadi, Wissam B Nassrallah, David Mikhail, Daniel Milad, Mona Harissi-Dagher\",\"doi\":\"10.1016/j.jcjo.2025.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To evaluate the performance of large language models (LLMs), specifically Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced), in answering ophthalmological questions and assessing the impact of prompting techniques on their accuracy.</p><p><strong>Design: </strong>Prospective qualitative study.</p><p><strong>Participants: </strong>Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced).</p><p><strong>Methods: </strong>A total of 300 ophthalmological questions from StatPearls were tested, covering a range of subspecialties and image-based tasks. Each question was evaluated using 2 prompting techniques: zero-shot forced prompting (prompt 1) and combined role-based and zero-shot plan-and-solve+ prompting (prompt 2).</p><p><strong>Results: </strong>With zero-shot forced prompting, GPT-4o demonstrated significantly superior overall performance, correctly answering 72.3% of questions and outperforming all other models, including Copilot (53.7%), GPT-4o mini (62.0%), Gemini (54.3%), and Gemini Advanced (62.0%) (p < 0.0001). Both Copilot and GPT-4o showed notable improvements with Prompt 2 over Prompt 1, elevating Copilot's accuracy from the lowest (53.7%) to the second highest (72.3%) among the evaluated LLMs.</p><p><strong>Conclusions: </strong>While newer iterations of LLMs, such as GPT-4o and Gemini Advanced, outperformed their less advanced counterparts (GPT-4o mini and Gemini), this study emphasizes the need for caution in clinical applications of these models. The choice of prompting techniques significantly influences performance, highlighting the necessity for further research to refine LLMs capabilities, particularly in visual data interpretation, to ensure their safe integration into medical practice.</p>\",\"PeriodicalId\":9606,\"journal\":{\"name\":\"Canadian journal of ophthalmology. Journal canadien d'ophtalmologie\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of ophthalmology. Journal canadien d'ophtalmologie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcjo.2025.01.001\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of ophthalmology. Journal canadien d'ophtalmologie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcjo.2025.01.001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:评价大型语言模型(LLMs),特别是Microsoft Copilot、GPT-4 (gpt - 40和gpt - 40 mini)和谷歌Gemini (Gemini和Gemini Advanced)在回答眼科问题方面的性能,并评估提示技术对其准确性的影响。设计:前瞻性定性研究。参与者:Microsoft Copilot、GPT-4 (gpt - 40和gpt - 40 mini)和谷歌Gemini (Gemini和Gemini Advanced)。方法:对来自StatPearls的300个眼科问题进行测试,涵盖了一系列亚专科和基于图像的任务。每个问题使用两种提示技术进行评估:零次强制提示(提示1)和基于角色和零次计划解决+提示(提示2)。结果:在零次强制提示下,gpt - 40表现出明显优越的整体表现,正确率为72.3%,优于所有其他模型,包括Copilot(53.7%)、gpt - 40 mini(62.0%)、Gemini(54.3%)和Gemini Advanced (62.0%) (p < 0.0001)。与提示1相比,Copilot和gpt - 40在提示2上都表现出了显著的改进,在评估的llm中,Copilot的准确率从最低(53.7%)提高到第二高(72.3%)。结论:虽然较新的llm迭代,如gpt - 40和Gemini Advanced,优于较不先进的同类(gpt - 40 mini和Gemini),但本研究强调在这些模型的临床应用中需要谨慎。提示技术的选择显著影响性能,强调了进一步研究以完善llm能力的必要性,特别是在视觉数据解释方面,以确保其安全集成到医疗实践中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the performance of Microsoft Copilot, GPT-4 and Google Gemini in ophthalmology.

Objective: To evaluate the performance of large language models (LLMs), specifically Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced), in answering ophthalmological questions and assessing the impact of prompting techniques on their accuracy.

Design: Prospective qualitative study.

Participants: Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced).

Methods: A total of 300 ophthalmological questions from StatPearls were tested, covering a range of subspecialties and image-based tasks. Each question was evaluated using 2 prompting techniques: zero-shot forced prompting (prompt 1) and combined role-based and zero-shot plan-and-solve+ prompting (prompt 2).

Results: With zero-shot forced prompting, GPT-4o demonstrated significantly superior overall performance, correctly answering 72.3% of questions and outperforming all other models, including Copilot (53.7%), GPT-4o mini (62.0%), Gemini (54.3%), and Gemini Advanced (62.0%) (p < 0.0001). Both Copilot and GPT-4o showed notable improvements with Prompt 2 over Prompt 1, elevating Copilot's accuracy from the lowest (53.7%) to the second highest (72.3%) among the evaluated LLMs.

Conclusions: While newer iterations of LLMs, such as GPT-4o and Gemini Advanced, outperformed their less advanced counterparts (GPT-4o mini and Gemini), this study emphasizes the need for caution in clinical applications of these models. The choice of prompting techniques significantly influences performance, highlighting the necessity for further research to refine LLMs capabilities, particularly in visual data interpretation, to ensure their safe integration into medical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
4.80%
发文量
223
审稿时长
38 days
期刊介绍: Official journal of the Canadian Ophthalmological Society. The Canadian Journal of Ophthalmology (CJO) is the official journal of the Canadian Ophthalmological Society and is committed to timely publication of original, peer-reviewed ophthalmology and vision science articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信