评估 Microsoft Copilot、GPT-4 和 Google Gemini 在眼科方面的性能。

IF 3.3 4区 医学 Q1 OPHTHALMOLOGY
Meziane Silhadi, Wissam B Nassrallah, David Mikhail, Daniel Milad, Mona Harissi-Dagher
{"title":"评估 Microsoft Copilot、GPT-4 和 Google Gemini 在眼科方面的性能。","authors":"Meziane Silhadi, Wissam B Nassrallah, David Mikhail, Daniel Milad, Mona Harissi-Dagher","doi":"10.1016/j.jcjo.2025.01.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the performance of large language models (LLMs), specifically Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced), in answering ophthalmological questions and assessing the impact of prompting techniques on their accuracy.</p><p><strong>Design: </strong>Prospective qualitative study.</p><p><strong>Participants: </strong>Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced).</p><p><strong>Methods: </strong>A total of 300 ophthalmological questions from StatPearls were tested, covering a range of subspecialties and image-based tasks. Each question was evaluated using 2 prompting techniques: zero-shot forced prompting (prompt 1) and combined role-based and zero-shot plan-and-solve+ prompting (prompt 2).</p><p><strong>Results: </strong>With zero-shot forced prompting, GPT-4o demonstrated significantly superior overall performance, correctly answering 72.3% of questions and outperforming all other models, including Copilot (53.7%), GPT-4o mini (62.0%), Gemini (54.3%), and Gemini Advanced (62.0%) (p < 0.0001). Both Copilot and GPT-4o showed notable improvements with Prompt 2 over Prompt 1, elevating Copilot's accuracy from the lowest (53.7%) to the second highest (72.3%) among the evaluated LLMs.</p><p><strong>Conclusions: </strong>While newer iterations of LLMs, such as GPT-4o and Gemini Advanced, outperformed their less advanced counterparts (GPT-4o mini and Gemini), this study emphasizes the need for caution in clinical applications of these models. The choice of prompting techniques significantly influences performance, highlighting the necessity for further research to refine LLMs capabilities, particularly in visual data interpretation, to ensure their safe integration into medical practice.</p>","PeriodicalId":9606,"journal":{"name":"Canadian journal of ophthalmology. Journal canadien d'ophtalmologie","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the performance of Microsoft Copilot, GPT-4 and Google Gemini in ophthalmology.\",\"authors\":\"Meziane Silhadi, Wissam B Nassrallah, David Mikhail, Daniel Milad, Mona Harissi-Dagher\",\"doi\":\"10.1016/j.jcjo.2025.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To evaluate the performance of large language models (LLMs), specifically Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced), in answering ophthalmological questions and assessing the impact of prompting techniques on their accuracy.</p><p><strong>Design: </strong>Prospective qualitative study.</p><p><strong>Participants: </strong>Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced).</p><p><strong>Methods: </strong>A total of 300 ophthalmological questions from StatPearls were tested, covering a range of subspecialties and image-based tasks. Each question was evaluated using 2 prompting techniques: zero-shot forced prompting (prompt 1) and combined role-based and zero-shot plan-and-solve+ prompting (prompt 2).</p><p><strong>Results: </strong>With zero-shot forced prompting, GPT-4o demonstrated significantly superior overall performance, correctly answering 72.3% of questions and outperforming all other models, including Copilot (53.7%), GPT-4o mini (62.0%), Gemini (54.3%), and Gemini Advanced (62.0%) (p < 0.0001). Both Copilot and GPT-4o showed notable improvements with Prompt 2 over Prompt 1, elevating Copilot's accuracy from the lowest (53.7%) to the second highest (72.3%) among the evaluated LLMs.</p><p><strong>Conclusions: </strong>While newer iterations of LLMs, such as GPT-4o and Gemini Advanced, outperformed their less advanced counterparts (GPT-4o mini and Gemini), this study emphasizes the need for caution in clinical applications of these models. The choice of prompting techniques significantly influences performance, highlighting the necessity for further research to refine LLMs capabilities, particularly in visual data interpretation, to ensure their safe integration into medical practice.</p>\",\"PeriodicalId\":9606,\"journal\":{\"name\":\"Canadian journal of ophthalmology. Journal canadien d'ophtalmologie\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of ophthalmology. Journal canadien d'ophtalmologie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcjo.2025.01.001\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of ophthalmology. Journal canadien d'ophtalmologie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcjo.2025.01.001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the performance of Microsoft Copilot, GPT-4 and Google Gemini in ophthalmology.

Objective: To evaluate the performance of large language models (LLMs), specifically Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced), in answering ophthalmological questions and assessing the impact of prompting techniques on their accuracy.

Design: Prospective qualitative study.

Participants: Microsoft Copilot, GPT-4 (GPT-4o and GPT-4o mini), and Google Gemini (Gemini and Gemini Advanced).

Methods: A total of 300 ophthalmological questions from StatPearls were tested, covering a range of subspecialties and image-based tasks. Each question was evaluated using 2 prompting techniques: zero-shot forced prompting (prompt 1) and combined role-based and zero-shot plan-and-solve+ prompting (prompt 2).

Results: With zero-shot forced prompting, GPT-4o demonstrated significantly superior overall performance, correctly answering 72.3% of questions and outperforming all other models, including Copilot (53.7%), GPT-4o mini (62.0%), Gemini (54.3%), and Gemini Advanced (62.0%) (p < 0.0001). Both Copilot and GPT-4o showed notable improvements with Prompt 2 over Prompt 1, elevating Copilot's accuracy from the lowest (53.7%) to the second highest (72.3%) among the evaluated LLMs.

Conclusions: While newer iterations of LLMs, such as GPT-4o and Gemini Advanced, outperformed their less advanced counterparts (GPT-4o mini and Gemini), this study emphasizes the need for caution in clinical applications of these models. The choice of prompting techniques significantly influences performance, highlighting the necessity for further research to refine LLMs capabilities, particularly in visual data interpretation, to ensure their safe integration into medical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
4.80%
发文量
223
审稿时长
38 days
期刊介绍: Official journal of the Canadian Ophthalmological Society. The Canadian Journal of Ophthalmology (CJO) is the official journal of the Canadian Ophthalmological Society and is committed to timely publication of original, peer-reviewed ophthalmology and vision science articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信