{"title":"利用基因表达数据预测多发性骨髓瘤从无症状到有症状的进展及分期","authors":"Nestoras Karathanasis, George M Spyrou","doi":"10.3390/cancers17020332","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The accurate staging of multiple myeloma (MM) is essential for optimizing treatment strategies, while predicting the progression of asymptomatic patients, also referred to as monoclonal gammopathy of undetermined significance (MGUS), to symptomatic MM remains a significant challenge due to limited data. This study aimed to develop machine learning models to enhance MM staging accuracy and stratify asymptomatic patients by their risk of progression.</p><p><strong>Methods: </strong>We utilized gene expression microarray datasets to develop machine learning models, combined with various data transformations. For multiple myeloma staging, models were trained on a single dataset and validated across five independent datasets, with performance evaluated using multiclass area under the curve (AUC) metrics. To predict progression in asymptomatic patients, we employed two approaches: (1) training models on a dataset comprising asymptomatic patients who either progressed or remained stable without progressing to multiple myeloma, and (2) training models on multiple datasets combining asymptomatic and multiple myeloma samples and then testing their ability to distinguish between asymptomatic and asymptomatic that progressed. We performed feature selection and enrichment analyses to identify key signaling pathways underlying disease stages and progression.</p><p><strong>Results: </strong>Multiple myeloma staging models demonstrated high efficacy, with ElasticNet achieving consistent multiclass AUC values of 0.9 across datasets and transformations, demonstrating robust generalizability. For asymptomatic progression, both modeling approaches yielded similar results, with AUC values exceeding 0.8 across datasets and algorithms (ElasticNet, Boosting, and Support Vector Machines), underscoring their potential in identifying progression risk. Enrichment analyses revealed key pathways, including PI3K-Akt, MAPK, Wnt, and mTOR, as central to MM pathogenesis.</p><p><strong>Conclusions: </strong>To the best of our knowledge, this is the first study to utilize gene expression datasets for classifying patients across different stages of multiple myeloma and to integrate multiple myeloma with asymptomatic cases to predict disease progression, offering a novel methodology with potential clinical applications in patient monitoring and early intervention.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 2","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764453/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting the Progression from Asymptomatic to Symptomatic Multiple Myeloma and Stage Classification Using Gene Expression Data.\",\"authors\":\"Nestoras Karathanasis, George M Spyrou\",\"doi\":\"10.3390/cancers17020332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The accurate staging of multiple myeloma (MM) is essential for optimizing treatment strategies, while predicting the progression of asymptomatic patients, also referred to as monoclonal gammopathy of undetermined significance (MGUS), to symptomatic MM remains a significant challenge due to limited data. This study aimed to develop machine learning models to enhance MM staging accuracy and stratify asymptomatic patients by their risk of progression.</p><p><strong>Methods: </strong>We utilized gene expression microarray datasets to develop machine learning models, combined with various data transformations. For multiple myeloma staging, models were trained on a single dataset and validated across five independent datasets, with performance evaluated using multiclass area under the curve (AUC) metrics. To predict progression in asymptomatic patients, we employed two approaches: (1) training models on a dataset comprising asymptomatic patients who either progressed or remained stable without progressing to multiple myeloma, and (2) training models on multiple datasets combining asymptomatic and multiple myeloma samples and then testing their ability to distinguish between asymptomatic and asymptomatic that progressed. We performed feature selection and enrichment analyses to identify key signaling pathways underlying disease stages and progression.</p><p><strong>Results: </strong>Multiple myeloma staging models demonstrated high efficacy, with ElasticNet achieving consistent multiclass AUC values of 0.9 across datasets and transformations, demonstrating robust generalizability. For asymptomatic progression, both modeling approaches yielded similar results, with AUC values exceeding 0.8 across datasets and algorithms (ElasticNet, Boosting, and Support Vector Machines), underscoring their potential in identifying progression risk. Enrichment analyses revealed key pathways, including PI3K-Akt, MAPK, Wnt, and mTOR, as central to MM pathogenesis.</p><p><strong>Conclusions: </strong>To the best of our knowledge, this is the first study to utilize gene expression datasets for classifying patients across different stages of multiple myeloma and to integrate multiple myeloma with asymptomatic cases to predict disease progression, offering a novel methodology with potential clinical applications in patient monitoring and early intervention.</p>\",\"PeriodicalId\":9681,\"journal\":{\"name\":\"Cancers\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764453/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancers\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/cancers17020332\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17020332","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Predicting the Progression from Asymptomatic to Symptomatic Multiple Myeloma and Stage Classification Using Gene Expression Data.
Background: The accurate staging of multiple myeloma (MM) is essential for optimizing treatment strategies, while predicting the progression of asymptomatic patients, also referred to as monoclonal gammopathy of undetermined significance (MGUS), to symptomatic MM remains a significant challenge due to limited data. This study aimed to develop machine learning models to enhance MM staging accuracy and stratify asymptomatic patients by their risk of progression.
Methods: We utilized gene expression microarray datasets to develop machine learning models, combined with various data transformations. For multiple myeloma staging, models were trained on a single dataset and validated across five independent datasets, with performance evaluated using multiclass area under the curve (AUC) metrics. To predict progression in asymptomatic patients, we employed two approaches: (1) training models on a dataset comprising asymptomatic patients who either progressed or remained stable without progressing to multiple myeloma, and (2) training models on multiple datasets combining asymptomatic and multiple myeloma samples and then testing their ability to distinguish between asymptomatic and asymptomatic that progressed. We performed feature selection and enrichment analyses to identify key signaling pathways underlying disease stages and progression.
Results: Multiple myeloma staging models demonstrated high efficacy, with ElasticNet achieving consistent multiclass AUC values of 0.9 across datasets and transformations, demonstrating robust generalizability. For asymptomatic progression, both modeling approaches yielded similar results, with AUC values exceeding 0.8 across datasets and algorithms (ElasticNet, Boosting, and Support Vector Machines), underscoring their potential in identifying progression risk. Enrichment analyses revealed key pathways, including PI3K-Akt, MAPK, Wnt, and mTOR, as central to MM pathogenesis.
Conclusions: To the best of our knowledge, this is the first study to utilize gene expression datasets for classifying patients across different stages of multiple myeloma and to integrate multiple myeloma with asymptomatic cases to predict disease progression, offering a novel methodology with potential clinical applications in patient monitoring and early intervention.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.