一类分数阶Allen-Cahn方程的高阶分时蒙特卡罗方法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Huifang Yuan , Zhiyuan Hui
{"title":"一类分数阶Allen-Cahn方程的高阶分时蒙特卡罗方法","authors":"Huifang Yuan ,&nbsp;Zhiyuan Hui","doi":"10.1016/j.aml.2025.109467","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a novel class of higher-order time-splitting Monte Carlo method tailored for both fractional and classical Allen–Cahn equations. The proposed method integrates the spectral Monte Carlo method (SMC) with a time-splitting scheme, alternating between efficiently computing the linear propagator via the spectral Monte Carlo method and explicitly evaluating the nonlinear propagator. Numerical results for various <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span> demonstrate the method’s ability to achieve first-, second-, and fourth-order convergence rates, thereby confirming its effectiveness and accuracy.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109467"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of higher-order time-splitting Monte Carlo method for fractional Allen–Cahn equation\",\"authors\":\"Huifang Yuan ,&nbsp;Zhiyuan Hui\",\"doi\":\"10.1016/j.aml.2025.109467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce a novel class of higher-order time-splitting Monte Carlo method tailored for both fractional and classical Allen–Cahn equations. The proposed method integrates the spectral Monte Carlo method (SMC) with a time-splitting scheme, alternating between efficiently computing the linear propagator via the spectral Monte Carlo method and explicitly evaluating the nonlinear propagator. Numerical results for various <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span> demonstrate the method’s ability to achieve first-, second-, and fourth-order convergence rates, thereby confirming its effectiveness and accuracy.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"163 \",\"pages\":\"Article 109467\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089396592500014X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089396592500014X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了一类适合于分数阶和经典Allen-Cahn方程的新颖的高阶分时蒙特卡罗方法。该方法将谱蒙特卡罗方法(SMC)与时间分裂方案相结合,在谱蒙特卡罗方法有效计算线性传播量和显式计算非线性传播量之间交替进行。对于各种α∈(0,2)的数值结果表明,该方法能够达到一阶、二阶和四阶收敛速率,从而证实了其有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of higher-order time-splitting Monte Carlo method for fractional Allen–Cahn equation
In this paper, we introduce a novel class of higher-order time-splitting Monte Carlo method tailored for both fractional and classical Allen–Cahn equations. The proposed method integrates the spectral Monte Carlo method (SMC) with a time-splitting scheme, alternating between efficiently computing the linear propagator via the spectral Monte Carlo method and explicitly evaluating the nonlinear propagator. Numerical results for various α(0,2] demonstrate the method’s ability to achieve first-, second-, and fourth-order convergence rates, thereby confirming its effectiveness and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信