温度季节性调节湖泊有机碳埋藏

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shengfang Zhou, Hao Long, Weizhe Chen, Chunjing Qiu, Can Zhang, Hang Xing, Jingran Zhang, Liangqing Cheng, Cheng Zhao, Jun Cheng, Philippe Ciais
{"title":"温度季节性调节湖泊有机碳埋藏","authors":"Shengfang Zhou, Hao Long, Weizhe Chen, Chunjing Qiu, Can Zhang, Hang Xing, Jingran Zhang, Liangqing Cheng, Cheng Zhao, Jun Cheng, Philippe Ciais","doi":"10.1038/s41467-025-56399-4","DOIUrl":null,"url":null,"abstract":"<p>Organic carbon burial (OCB) in lakes, a critical component of the global carbon cycle, surpasses that in oceans, yet its response to global warming and associated feedbacks remains poorly understood. Using a well-dated biomarker sequence from the southern Tibetan Plateau and a comprehensive analysis of Holocene total organic carbon variations in lakes across the region, here we demonstrate that lake OCB significantly declined throughout the Holocene, closely linked to changes in temperature seasonality. Process-based land surface model simulations clarified the key impact of temperature seasonality on OCB in lakes: increased seasonality in the early Holocene saw warmer summers enhancing ecosystem productivity and organic matter deposition, while cooler winters improved organic matter preservation. The Tibetan Plateau’s heightened sensitivity to climate and ecosystem dynamics amplifies these effects. With declining temperature seasonality, we predict a significant slowdown or reduction in OCB across these lake sediments, leading to carbon emissions and amplified global warming.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"38 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature seasonality regulates organic carbon burial in lake\",\"authors\":\"Shengfang Zhou, Hao Long, Weizhe Chen, Chunjing Qiu, Can Zhang, Hang Xing, Jingran Zhang, Liangqing Cheng, Cheng Zhao, Jun Cheng, Philippe Ciais\",\"doi\":\"10.1038/s41467-025-56399-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic carbon burial (OCB) in lakes, a critical component of the global carbon cycle, surpasses that in oceans, yet its response to global warming and associated feedbacks remains poorly understood. Using a well-dated biomarker sequence from the southern Tibetan Plateau and a comprehensive analysis of Holocene total organic carbon variations in lakes across the region, here we demonstrate that lake OCB significantly declined throughout the Holocene, closely linked to changes in temperature seasonality. Process-based land surface model simulations clarified the key impact of temperature seasonality on OCB in lakes: increased seasonality in the early Holocene saw warmer summers enhancing ecosystem productivity and organic matter deposition, while cooler winters improved organic matter preservation. The Tibetan Plateau’s heightened sensitivity to climate and ecosystem dynamics amplifies these effects. With declining temperature seasonality, we predict a significant slowdown or reduction in OCB across these lake sediments, leading to carbon emissions and amplified global warming.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56399-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56399-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

湖泊中的有机碳埋藏(OCB)是全球碳循环的一个重要组成部分,超过了海洋中的有机碳埋藏,但其对全球变暖的反应及其相关反馈仍知之甚少。利用青藏高原南部的生物标志物序列和对该地区湖泊全新世总有机碳变化的综合分析,我们发现湖泊OCB在整个全新世显著下降,与温度季节性变化密切相关。基于过程的陆地表面模式模拟阐明了温度季节性对湖泊OCB的关键影响:全新世早期季节性增加,夏季变暖有利于生态系统生产力和有机质沉积,冬季变冷有利于有机质保存。青藏高原对气候和生态系统动态的高度敏感性放大了这些影响。随着温度季节性的下降,我们预测这些湖泊沉积物中OCB的显著减缓或减少,导致碳排放和加剧全球变暖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Temperature seasonality regulates organic carbon burial in lake

Temperature seasonality regulates organic carbon burial in lake

Organic carbon burial (OCB) in lakes, a critical component of the global carbon cycle, surpasses that in oceans, yet its response to global warming and associated feedbacks remains poorly understood. Using a well-dated biomarker sequence from the southern Tibetan Plateau and a comprehensive analysis of Holocene total organic carbon variations in lakes across the region, here we demonstrate that lake OCB significantly declined throughout the Holocene, closely linked to changes in temperature seasonality. Process-based land surface model simulations clarified the key impact of temperature seasonality on OCB in lakes: increased seasonality in the early Holocene saw warmer summers enhancing ecosystem productivity and organic matter deposition, while cooler winters improved organic matter preservation. The Tibetan Plateau’s heightened sensitivity to climate and ecosystem dynamics amplifies these effects. With declining temperature seasonality, we predict a significant slowdown or reduction in OCB across these lake sediments, leading to carbon emissions and amplified global warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信