{"title":"低成本土壤菌丝高分辨率成像装置的研制与应用。","authors":"Holger Schaefer","doi":"10.1371/journal.pone.0318083","DOIUrl":null,"url":null,"abstract":"<p><p>Soil imaging in the field and laboratory has greatly advanced our understanding of plant root systems. Soil fungi function as important plant symbionts and decomposers of complex organic material in soil environments. For fungal hyphae, however, the application of soil imaging remains scarce, limiting our understanding of hyphal systems in soil. This scarce application is partly due to the challenging development of a soil imaging device for hyphae: technical requirements to resolve fine hyphae (2-5 μm in diameter) are high, while the device cost must be low to facilitate sufficient deployment that can capture the high spatial heterogeneity of hyphal dynamics in soil. This protocol describes the do-it-yourself assembly and application of a low-cost high-resolution imaging device for observing hyphae in soil. The assembly of the open-source imaging device relies on many 3D-printed parts, reducing material costs to ca. 930 USD. The application of the imaging device yields soil profile images with a resolution of up to 0.52 μm px-1 (49000 dpi) within an observable volume of 70 × 210 × 1.5 mm. By repeatedly imaging a soil profile using the presented techniques, changes in the amount, distribution, and morphology of hyphae in soil can be observed and quantified.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0318083"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760638/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assembly and application of a low-cost high-resolution imaging device for hyphae in soil.\",\"authors\":\"Holger Schaefer\",\"doi\":\"10.1371/journal.pone.0318083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil imaging in the field and laboratory has greatly advanced our understanding of plant root systems. Soil fungi function as important plant symbionts and decomposers of complex organic material in soil environments. For fungal hyphae, however, the application of soil imaging remains scarce, limiting our understanding of hyphal systems in soil. This scarce application is partly due to the challenging development of a soil imaging device for hyphae: technical requirements to resolve fine hyphae (2-5 μm in diameter) are high, while the device cost must be low to facilitate sufficient deployment that can capture the high spatial heterogeneity of hyphal dynamics in soil. This protocol describes the do-it-yourself assembly and application of a low-cost high-resolution imaging device for observing hyphae in soil. The assembly of the open-source imaging device relies on many 3D-printed parts, reducing material costs to ca. 930 USD. The application of the imaging device yields soil profile images with a resolution of up to 0.52 μm px-1 (49000 dpi) within an observable volume of 70 × 210 × 1.5 mm. By repeatedly imaging a soil profile using the presented techniques, changes in the amount, distribution, and morphology of hyphae in soil can be observed and quantified.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 1\",\"pages\":\"e0318083\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760638/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0318083\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0318083","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Assembly and application of a low-cost high-resolution imaging device for hyphae in soil.
Soil imaging in the field and laboratory has greatly advanced our understanding of plant root systems. Soil fungi function as important plant symbionts and decomposers of complex organic material in soil environments. For fungal hyphae, however, the application of soil imaging remains scarce, limiting our understanding of hyphal systems in soil. This scarce application is partly due to the challenging development of a soil imaging device for hyphae: technical requirements to resolve fine hyphae (2-5 μm in diameter) are high, while the device cost must be low to facilitate sufficient deployment that can capture the high spatial heterogeneity of hyphal dynamics in soil. This protocol describes the do-it-yourself assembly and application of a low-cost high-resolution imaging device for observing hyphae in soil. The assembly of the open-source imaging device relies on many 3D-printed parts, reducing material costs to ca. 930 USD. The application of the imaging device yields soil profile images with a resolution of up to 0.52 μm px-1 (49000 dpi) within an observable volume of 70 × 210 × 1.5 mm. By repeatedly imaging a soil profile using the presented techniques, changes in the amount, distribution, and morphology of hyphae in soil can be observed and quantified.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage