纳米氧化锌和氧化镁涂层正畸矫正器的抗菌性能和光学特性研究。

IF 2.4 3区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Mahnaz Gharibnavaz, Valiollah Arash, Abazar Pournajaf, Farhood Najafi, Manouchehr Rahmati Kamel, Seyedali Seyedmajidi
{"title":"纳米氧化锌和氧化镁涂层正畸矫正器的抗菌性能和光学特性研究。","authors":"Mahnaz Gharibnavaz,&nbsp;Valiollah Arash,&nbsp;Abazar Pournajaf,&nbsp;Farhood Najafi,&nbsp;Manouchehr Rahmati Kamel,&nbsp;Seyedali Seyedmajidi","doi":"10.1111/ocr.12899","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objectives</h3>\n \n <p>This study aimed to evaluate and compare the antibacterial properties and optical characteristics of clear orthodontic aligners coated with zinc oxide (ZnO) and magnesium oxide (MgO) nanoparticles.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>In this experimental laboratory study, polyethylene terephthalate glycol (PETG) aligner samples were coated with nanoparticles of ZnO, MgO and a combination of both (ZnO + MgO). The surface coatings were analysed before and after stability testing using field emission scanning electron microscopy (FESEM). Colour changes and translucency were measured using a spectrophotometer, and the antimicrobial and antibiofilm properties were evaluated against \n <i>Streptococcus mutans</i>\n and <i>Lactobacillus</i> species. Statistical analysis was conducted using SPSS, with significance set at <i>p</i> &lt; 0.05.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Significant statistical differences were found in the colour changes between the groups (<i>p</i> &lt; 0.001), with the greatest change in MgO-coated aligners (0.94 ± 0.09), followed by ZnO + MgO (0.75 ± 0.05) and ZnO (0.5 ± 0.09). ZnO-coated aligners exhibited the highest translucency (47.6 ± 0.44) compared to MgO (45.07 ± 0.74) and ZnO + MgO (45.76 ± 0.7) (<i>p</i> = 0.002 and <i>p</i> = 0.026, respectively). Nanoparticle-coated aligners showed significantly reduced bacterial growth (<i>p</i> &lt; 0.05). The ZnO + MgO combination demonstrated superior antibacterial effects compared to individual coatings. Nanoparticles remained stable after 24-h agitation in artificial saliva and brushing, maintaining 60%–65% stability.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The aligners coated with ZnO nanoparticles exhibited the least colour change and the highest translucency compared to those coated with MgO nanoparticles and the ZnO + MgO combination. The highest antibacterial properties were observed in the aligners coated with a combination of ZnO and MgO nanoparticles.</p>\n </section>\n </div>","PeriodicalId":19652,"journal":{"name":"Orthodontics & Craniofacial Research","volume":"28 3","pages":"496-506"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Antibacterial Properties and Optical Characteristics of Clear Orthodontic Aligners Coated With Zinc Oxide and Magnesium Oxide Nanoparticles\",\"authors\":\"Mahnaz Gharibnavaz,&nbsp;Valiollah Arash,&nbsp;Abazar Pournajaf,&nbsp;Farhood Najafi,&nbsp;Manouchehr Rahmati Kamel,&nbsp;Seyedali Seyedmajidi\",\"doi\":\"10.1111/ocr.12899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objectives</h3>\\n \\n <p>This study aimed to evaluate and compare the antibacterial properties and optical characteristics of clear orthodontic aligners coated with zinc oxide (ZnO) and magnesium oxide (MgO) nanoparticles.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Materials and Methods</h3>\\n \\n <p>In this experimental laboratory study, polyethylene terephthalate glycol (PETG) aligner samples were coated with nanoparticles of ZnO, MgO and a combination of both (ZnO + MgO). The surface coatings were analysed before and after stability testing using field emission scanning electron microscopy (FESEM). Colour changes and translucency were measured using a spectrophotometer, and the antimicrobial and antibiofilm properties were evaluated against \\n <i>Streptococcus mutans</i>\\n and <i>Lactobacillus</i> species. Statistical analysis was conducted using SPSS, with significance set at <i>p</i> &lt; 0.05.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Significant statistical differences were found in the colour changes between the groups (<i>p</i> &lt; 0.001), with the greatest change in MgO-coated aligners (0.94 ± 0.09), followed by ZnO + MgO (0.75 ± 0.05) and ZnO (0.5 ± 0.09). ZnO-coated aligners exhibited the highest translucency (47.6 ± 0.44) compared to MgO (45.07 ± 0.74) and ZnO + MgO (45.76 ± 0.7) (<i>p</i> = 0.002 and <i>p</i> = 0.026, respectively). Nanoparticle-coated aligners showed significantly reduced bacterial growth (<i>p</i> &lt; 0.05). The ZnO + MgO combination demonstrated superior antibacterial effects compared to individual coatings. Nanoparticles remained stable after 24-h agitation in artificial saliva and brushing, maintaining 60%–65% stability.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>The aligners coated with ZnO nanoparticles exhibited the least colour change and the highest translucency compared to those coated with MgO nanoparticles and the ZnO + MgO combination. The highest antibacterial properties were observed in the aligners coated with a combination of ZnO and MgO nanoparticles.</p>\\n </section>\\n </div>\",\"PeriodicalId\":19652,\"journal\":{\"name\":\"Orthodontics & Craniofacial Research\",\"volume\":\"28 3\",\"pages\":\"496-506\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Orthodontics & Craniofacial Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ocr.12899\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orthodontics & Craniofacial Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ocr.12899","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:评价和比较氧化锌(ZnO)和氧化镁(MgO)纳米颗粒涂层正畸矫正器的抗菌性能和光学特性。材料和方法:在本实验研究中,将聚对苯二甲酸乙二醇酯(PETG)对准剂样品涂覆ZnO、MgO以及两者的组合(ZnO + MgO)纳米颗粒。采用场发射扫描电镜(FESEM)对表面涂层稳定性测试前后进行了分析。用分光光度计测量颜色变化和透明度,并评估对变形链球菌和乳酸菌的抗菌和抗生物膜性能。结果:两组牙体颜色变化差异有统计学意义(p)。结论:与MgO纳米粒子和ZnO + MgO组合牙体相比,ZnO纳米粒子包被的牙体颜色变化最小,半透明性最高。用氧化锌和氧化镁复合纳米颗粒包被的对准器具有最高的抗菌性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the Antibacterial Properties and Optical Characteristics of Clear Orthodontic Aligners Coated With Zinc Oxide and Magnesium Oxide Nanoparticles

Objectives

This study aimed to evaluate and compare the antibacterial properties and optical characteristics of clear orthodontic aligners coated with zinc oxide (ZnO) and magnesium oxide (MgO) nanoparticles.

Materials and Methods

In this experimental laboratory study, polyethylene terephthalate glycol (PETG) aligner samples were coated with nanoparticles of ZnO, MgO and a combination of both (ZnO + MgO). The surface coatings were analysed before and after stability testing using field emission scanning electron microscopy (FESEM). Colour changes and translucency were measured using a spectrophotometer, and the antimicrobial and antibiofilm properties were evaluated against Streptococcus mutans and Lactobacillus species. Statistical analysis was conducted using SPSS, with significance set at p < 0.05.

Results

Significant statistical differences were found in the colour changes between the groups (p < 0.001), with the greatest change in MgO-coated aligners (0.94 ± 0.09), followed by ZnO + MgO (0.75 ± 0.05) and ZnO (0.5 ± 0.09). ZnO-coated aligners exhibited the highest translucency (47.6 ± 0.44) compared to MgO (45.07 ± 0.74) and ZnO + MgO (45.76 ± 0.7) (p = 0.002 and p = 0.026, respectively). Nanoparticle-coated aligners showed significantly reduced bacterial growth (p < 0.05). The ZnO + MgO combination demonstrated superior antibacterial effects compared to individual coatings. Nanoparticles remained stable after 24-h agitation in artificial saliva and brushing, maintaining 60%–65% stability.

Conclusion

The aligners coated with ZnO nanoparticles exhibited the least colour change and the highest translucency compared to those coated with MgO nanoparticles and the ZnO + MgO combination. The highest antibacterial properties were observed in the aligners coated with a combination of ZnO and MgO nanoparticles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Orthodontics & Craniofacial Research
Orthodontics & Craniofacial Research 医学-牙科与口腔外科
CiteScore
5.30
自引率
3.20%
发文量
65
审稿时长
>12 weeks
期刊介绍: Orthodontics & Craniofacial Research - Genes, Growth and Development is published to serve its readers as an international forum for the presentation and critical discussion of issues pertinent to the advancement of the specialty of orthodontics and the evidence-based knowledge of craniofacial growth and development. This forum is based on scientifically supported information, but also includes minority and conflicting opinions. The objective of the journal is to facilitate effective communication between the research community and practicing clinicians. Original papers of high scientific quality that report the findings of clinical trials, clinical epidemiology, and novel therapeutic or diagnostic approaches are appropriate submissions. Similarly, we welcome papers in genetics, developmental biology, syndromology, surgery, speech and hearing, and other biomedical disciplines related to clinical orthodontics and normal and abnormal craniofacial growth and development. In addition to original and basic research, the journal publishes concise reviews, case reports of substantial value, invited essays, letters, and announcements. The journal is published quarterly. The review of submitted papers will be coordinated by the editor and members of the editorial board. It is policy to review manuscripts within 3 to 4 weeks of receipt and to publish within 3 to 6 months of acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信