反渗透结合臭氧氧化法回收工业废水:技术与经济分析。

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Ivette Montero-Guadarrama, Claudia Muro Urista, Gabriela Roa-Morales, Edith Erialia Gutiérrez Segura, Vianney Díaz-Blancas, Germán Eduardo Dévora-Isiordia, Jesús Álvarez-Sánchez
{"title":"反渗透结合臭氧氧化法回收工业废水:技术与经济分析。","authors":"Ivette Montero-Guadarrama, Claudia Muro Urista, Gabriela Roa-Morales, Edith Erialia Gutiérrez Segura, Vianney Díaz-Blancas, Germán Eduardo Dévora-Isiordia, Jesús Álvarez-Sánchez","doi":"10.3390/membranes15010033","DOIUrl":null,"url":null,"abstract":"<p><p>Technical and economic criteria were used to evaluate the feasibility of the treatment of an industrial effluent (10 m<sup>3</sup>/h) for water recovery and reuse. The treatment evaluation included the following: (1) effluent characteristic determination; (2) selection and evaluation of the effluent treatment at lab scale, establishing operating conditions and process efficiency; (3) scaling up the treatment process to the industrial level; (4) treatment plant design and commercial availability analysis of the required equipment; and (5) the costs of the inversion and operation of the plant treatment, cost/m<sup>3</sup> for water recovery, and time of investment recovery. The physicochemical characteristics of the effluent exposed the polluted wastewater with sodium chloride salts and colourants, predominating a mixture of tartrazine, Red 40, and brilliant blue from the synthesis of food additives. Other contributions of organic compounds and salts could be in minor content. According to the effluent conditions, a coupled process, integrated with ozonation and reverse osmosis, was indicated to be a treatment for water recovery. Scaling up the plant treatment design resulted in 130 m<sup>2</sup> of area, producing 7.7 m<sup>3</sup>/h of clean water. The cost of the effluent treatment was 1.4 USD/m<sup>3</sup>, with an inversion return of 3.4 years and cost investment of USD 860,407. The treatment process resulted a viable project for water recovery.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767101/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses.\",\"authors\":\"Ivette Montero-Guadarrama, Claudia Muro Urista, Gabriela Roa-Morales, Edith Erialia Gutiérrez Segura, Vianney Díaz-Blancas, Germán Eduardo Dévora-Isiordia, Jesús Álvarez-Sánchez\",\"doi\":\"10.3390/membranes15010033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Technical and economic criteria were used to evaluate the feasibility of the treatment of an industrial effluent (10 m<sup>3</sup>/h) for water recovery and reuse. The treatment evaluation included the following: (1) effluent characteristic determination; (2) selection and evaluation of the effluent treatment at lab scale, establishing operating conditions and process efficiency; (3) scaling up the treatment process to the industrial level; (4) treatment plant design and commercial availability analysis of the required equipment; and (5) the costs of the inversion and operation of the plant treatment, cost/m<sup>3</sup> for water recovery, and time of investment recovery. The physicochemical characteristics of the effluent exposed the polluted wastewater with sodium chloride salts and colourants, predominating a mixture of tartrazine, Red 40, and brilliant blue from the synthesis of food additives. Other contributions of organic compounds and salts could be in minor content. According to the effluent conditions, a coupled process, integrated with ozonation and reverse osmosis, was indicated to be a treatment for water recovery. Scaling up the plant treatment design resulted in 130 m<sup>2</sup> of area, producing 7.7 m<sup>3</sup>/h of clean water. The cost of the effluent treatment was 1.4 USD/m<sup>3</sup>, with an inversion return of 3.4 years and cost investment of USD 860,407. The treatment process resulted a viable project for water recovery.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767101/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes15010033\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15010033","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用技术和经济标准来评价处理工业废水(10立方米/小时)的可行性,以便回收和再利用。处理评价包括以下内容:(1)出水特性测定;(2)对实验室规模的污水处理进行选择和评价,确定操作条件和工艺效率;(3)将处理工艺扩大到工业水平;(4)处理厂设计及所需设备的商业可行性分析;(5)装置处理的转化运行费用、回水成本/m3、投资回收时间。废水的理化特性使污染废水暴露在氯化钠盐和着色剂中,主要是合成食品添加剂的酒黄石、红40和亮蓝的混合物。有机化合物和盐的其他贡献可能是少量的。根据出水条件,提出了臭氧氧化与反渗透相结合的耦合处理工艺。扩大工厂处理设计,面积达到130平方米,产生7.7立方米/小时的清洁水。污水处理成本为1.4美元/立方米,反演收益率为3.4年,投资成本为860407美元。处理过程产生了一个可行的水回收项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses.

Technical and economic criteria were used to evaluate the feasibility of the treatment of an industrial effluent (10 m3/h) for water recovery and reuse. The treatment evaluation included the following: (1) effluent characteristic determination; (2) selection and evaluation of the effluent treatment at lab scale, establishing operating conditions and process efficiency; (3) scaling up the treatment process to the industrial level; (4) treatment plant design and commercial availability analysis of the required equipment; and (5) the costs of the inversion and operation of the plant treatment, cost/m3 for water recovery, and time of investment recovery. The physicochemical characteristics of the effluent exposed the polluted wastewater with sodium chloride salts and colourants, predominating a mixture of tartrazine, Red 40, and brilliant blue from the synthesis of food additives. Other contributions of organic compounds and salts could be in minor content. According to the effluent conditions, a coupled process, integrated with ozonation and reverse osmosis, was indicated to be a treatment for water recovery. Scaling up the plant treatment design resulted in 130 m2 of area, producing 7.7 m3/h of clean water. The cost of the effluent treatment was 1.4 USD/m3, with an inversion return of 3.4 years and cost investment of USD 860,407. The treatment process resulted a viable project for water recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信