大面积增强渗透性的粘土复合膜用于染料/盐的高效分离。

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Yixuan Fu, Shuai Wang, Huiquan Liu, Ke Zhang, Lunxiang Zhang, Yongchen Song, Zheng Ling
{"title":"大面积增强渗透性的粘土复合膜用于染料/盐的高效分离。","authors":"Yixuan Fu, Shuai Wang, Huiquan Liu, Ke Zhang, Lunxiang Zhang, Yongchen Song, Zheng Ling","doi":"10.3390/membranes15010025","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating discharge of textile wastewater with plenty of dye and salt has resulted in serious environmental risks. Membranes assembled from two-dimensional (2D) nanomaterials with many tunable interlayer spacings are promising materials for dye/salt separation. However, the narrow layer spacing and tortuous interlayer transport channels of 2D-material-based membranes limit the processing capacity and the permeability of small salt ions for efficient dye/salt separation. In this work, a novel sepiolite/vermiculite membrane was fabricated using Meyer rod-coating and naturally occurring clay. The intercalation of sepiolite Nanofibers between vermiculite Nanosheets provides additional transport nanochannels and forms looser permeable networks, producing composite membranes with remarkably enhanced flux. As a result, the optimized membranes with 80% sepiolite exhibit remarkable flux as high as 78.12 LMH bar<sup>-1</sup>, outstanding dye rejection (Congo Red~98.26%), and excellent selectivity of dye/salt of 10.41. In addition, this novel all-clay composite membrane demonstrates stable separation performance under acidity, alkalinity and prolonged operation conditions. The large-scale sepiolite/vermiculite membranes made by the simple proposed method using low-cost materials provide new strategies for efficient and environmentally-friendly dye/salt separation.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767988/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large-Area Clay Composite Membranes with Enhanced Permeability for Efficient Dye/Salt Separation.\",\"authors\":\"Yixuan Fu, Shuai Wang, Huiquan Liu, Ke Zhang, Lunxiang Zhang, Yongchen Song, Zheng Ling\",\"doi\":\"10.3390/membranes15010025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The escalating discharge of textile wastewater with plenty of dye and salt has resulted in serious environmental risks. Membranes assembled from two-dimensional (2D) nanomaterials with many tunable interlayer spacings are promising materials for dye/salt separation. However, the narrow layer spacing and tortuous interlayer transport channels of 2D-material-based membranes limit the processing capacity and the permeability of small salt ions for efficient dye/salt separation. In this work, a novel sepiolite/vermiculite membrane was fabricated using Meyer rod-coating and naturally occurring clay. The intercalation of sepiolite Nanofibers between vermiculite Nanosheets provides additional transport nanochannels and forms looser permeable networks, producing composite membranes with remarkably enhanced flux. As a result, the optimized membranes with 80% sepiolite exhibit remarkable flux as high as 78.12 LMH bar<sup>-1</sup>, outstanding dye rejection (Congo Red~98.26%), and excellent selectivity of dye/salt of 10.41. In addition, this novel all-clay composite membrane demonstrates stable separation performance under acidity, alkalinity and prolonged operation conditions. The large-scale sepiolite/vermiculite membranes made by the simple proposed method using low-cost materials provide new strategies for efficient and environmentally-friendly dye/salt separation.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767988/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes15010025\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15010025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

含大量染料和盐的纺织废水的排放不断增加,造成了严重的环境风险。由具有许多可调层间距的二维纳米材料组装而成的膜是很有前途的染料/盐分离材料。然而,二维材料基膜的层间距窄,层间传输通道曲折,限制了小盐离子的处理能力和渗透能力,无法实现有效的染料/盐分离。在这项工作中,用迈耶棒涂层和天然粘土制备了一种新型海泡石/蛭石膜。海泡石纳米纤维在蛭石纳米片之间的嵌入提供了额外的传输纳米通道,形成了更松散的渗透网络,产生了通量显著增强的复合膜。结果表明,含80%海泡石的优化膜通量高达78.12 LMH bar-1,对染料的去除率(刚果红~98.26%)较高,对染料/盐的选择性为10.41。此外,该新型全粘土复合膜在酸碱度和长时间操作条件下均具有稳定的分离性能。采用该方法制备的大规模海泡石/蛭石膜为高效、环保的染料/盐分离提供了新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Area Clay Composite Membranes with Enhanced Permeability for Efficient Dye/Salt Separation.

The escalating discharge of textile wastewater with plenty of dye and salt has resulted in serious environmental risks. Membranes assembled from two-dimensional (2D) nanomaterials with many tunable interlayer spacings are promising materials for dye/salt separation. However, the narrow layer spacing and tortuous interlayer transport channels of 2D-material-based membranes limit the processing capacity and the permeability of small salt ions for efficient dye/salt separation. In this work, a novel sepiolite/vermiculite membrane was fabricated using Meyer rod-coating and naturally occurring clay. The intercalation of sepiolite Nanofibers between vermiculite Nanosheets provides additional transport nanochannels and forms looser permeable networks, producing composite membranes with remarkably enhanced flux. As a result, the optimized membranes with 80% sepiolite exhibit remarkable flux as high as 78.12 LMH bar-1, outstanding dye rejection (Congo Red~98.26%), and excellent selectivity of dye/salt of 10.41. In addition, this novel all-clay composite membrane demonstrates stable separation performance under acidity, alkalinity and prolonged operation conditions. The large-scale sepiolite/vermiculite membranes made by the simple proposed method using low-cost materials provide new strategies for efficient and environmentally-friendly dye/salt separation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信