膜中扩散和电输运过程的Kedem-Katchalsky-Peusner方程的混合版本。

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Andrzej Ślęzak, Sławomir M Grzegorczyn
{"title":"膜中扩散和电输运过程的Kedem-Katchalsky-Peusner方程的混合版本。","authors":"Andrzej Ślęzak, Sławomir M Grzegorczyn","doi":"10.3390/membranes15010036","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most important formalisms used to describe membrane transport is Onsager-Peusner thermodynamics (TOP). Within the TOP framework, a procedure has been developed for the transformation of the Kedem-Katchalsky (K-K) equations for the transport of binary electrolytic solutions across a membrane into the Kedem-Katchalsky-Peusner (K-K-P) equations. The membrane system with an Ultra Flo 145 Dialyser membrane used for hemodialysis and aqueous NaCl solutions was used as experimental setup. The H version of K-K-P formalism for binary electrolyte solutions was used to evaluate theoretical coefficients characterizing fluxes of energies and efficiencies for membrane transport processes. The coupling coefficients of membrane processes and the dissipative energy flux were calculated on the basis of the Peusner coefficients obtained from transformation of K-K coefficients. The knowledge of dissipative energy flux, which is a function of thermodynamic forces, allows for the determination of the energy conversions during transport processes in a membrane system. In addition, a frictional interpretation of the obtained coefficients is presented.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767150/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hybrid Version of the Kedem-Katchalsky-Peusner Equations for Diffusive and Electrical Transport Processes in Membrane.\",\"authors\":\"Andrzej Ślęzak, Sławomir M Grzegorczyn\",\"doi\":\"10.3390/membranes15010036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the most important formalisms used to describe membrane transport is Onsager-Peusner thermodynamics (TOP). Within the TOP framework, a procedure has been developed for the transformation of the Kedem-Katchalsky (K-K) equations for the transport of binary electrolytic solutions across a membrane into the Kedem-Katchalsky-Peusner (K-K-P) equations. The membrane system with an Ultra Flo 145 Dialyser membrane used for hemodialysis and aqueous NaCl solutions was used as experimental setup. The H version of K-K-P formalism for binary electrolyte solutions was used to evaluate theoretical coefficients characterizing fluxes of energies and efficiencies for membrane transport processes. The coupling coefficients of membrane processes and the dissipative energy flux were calculated on the basis of the Peusner coefficients obtained from transformation of K-K coefficients. The knowledge of dissipative energy flux, which is a function of thermodynamic forces, allows for the determination of the energy conversions during transport processes in a membrane system. In addition, a frictional interpretation of the obtained coefficients is presented.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767150/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes15010036\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15010036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

用来描述膜输运的最重要的形式化之一是Onsager-Peusner热力学(TOP)。在TOP框架内,开发了将二元电解溶液跨膜输运的Kedem-Katchalsky (K-K)方程转换为Kedem-Katchalsky- peusner (K-K- p)方程的程序。采用Ultra Flo 145透析膜和NaCl水溶液作为实验装置。采用二元电解质溶液的K-K-P形式的H版来评价表征膜传输过程能量通量和效率的理论系数。根据K-K系数变换得到的Peusner系数,计算了膜过程的耦合系数和耗散能量通量。耗散能量通量是热力学力的函数,它的知识使我们能够确定膜系统输运过程中的能量转换。此外,给出了所得系数的摩擦解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Version of the Kedem-Katchalsky-Peusner Equations for Diffusive and Electrical Transport Processes in Membrane.

One of the most important formalisms used to describe membrane transport is Onsager-Peusner thermodynamics (TOP). Within the TOP framework, a procedure has been developed for the transformation of the Kedem-Katchalsky (K-K) equations for the transport of binary electrolytic solutions across a membrane into the Kedem-Katchalsky-Peusner (K-K-P) equations. The membrane system with an Ultra Flo 145 Dialyser membrane used for hemodialysis and aqueous NaCl solutions was used as experimental setup. The H version of K-K-P formalism for binary electrolyte solutions was used to evaluate theoretical coefficients characterizing fluxes of energies and efficiencies for membrane transport processes. The coupling coefficients of membrane processes and the dissipative energy flux were calculated on the basis of the Peusner coefficients obtained from transformation of K-K coefficients. The knowledge of dissipative energy flux, which is a function of thermodynamic forces, allows for the determination of the energy conversions during transport processes in a membrane system. In addition, a frictional interpretation of the obtained coefficients is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信