人类出生后早期颅骨软组织扩张的计算模拟。

IF 1.9 3区 医学 Q2 ANATOMY & MORPHOLOGY
Amy Manson, Nathan Jeffery
{"title":"人类出生后早期颅骨软组织扩张的计算模拟。","authors":"Amy Manson, Nathan Jeffery","doi":"10.1111/joa.14211","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of interactions between neighbouring rapidly growing tissues of the head during development is recognised, yet this competition for space remains incompletely understood. The developing structures likely interact through a variety of mechanisms, including directly genetically programmed growth, and are mediated via physiological signalling that can be triggered by structural interactions. In this study, we aimed to investigate a different but related potential mechanism, that of simple mechanical plastic deformation of neighbouring structures of the head in response to soft tissue expansion during human postnatal ontogeny. We use computational modelling and normative real-world data to evaluate the potential for mechanical deformation to predict early postnatal cranial shape changes in humans. We test some aspects of the spatial packing hypothesis applied to the growing brain and masticatory muscles, and their effects on the cranium, with a particular focus on the basicranium and face. A simple finite element model of an early postnatal human cranium, brain and masticatory muscles was created from CT and MRI. Growth of the brain and muscles was simulated using a tissue expansion material. The effect of the expanding soft tissues on the cranium was assessed using geometric morphometrics, comparing the baseline model to simulation results, and also to normative cranial shape data collected from neonatal MRI (0-4 months of age). Findings revealed that cranial shape changes present in the normative sample were consistent with cranial base flexion and were largely allometric (size-linked). Simulation of brain expansion produced broadly similar shape changes of the basicranium with most growth occurring in the cranial vault, while masticatory muscle expansion produced smaller and more widespread changes throughout the cranium. When simulated together, expansion of the masticatory muscles exerted a constraining effect on the results of brain expansion. Our findings that the simple growth simulations were able to mimic biological growth suggest that the relationship between regions of the developing head may be partly structural within the first few months of postnatal ontogeny in humans.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational simulation of cranial soft tissue expansion on the cranium during early postnatal growth in humans.\",\"authors\":\"Amy Manson, Nathan Jeffery\",\"doi\":\"10.1111/joa.14211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The importance of interactions between neighbouring rapidly growing tissues of the head during development is recognised, yet this competition for space remains incompletely understood. The developing structures likely interact through a variety of mechanisms, including directly genetically programmed growth, and are mediated via physiological signalling that can be triggered by structural interactions. In this study, we aimed to investigate a different but related potential mechanism, that of simple mechanical plastic deformation of neighbouring structures of the head in response to soft tissue expansion during human postnatal ontogeny. We use computational modelling and normative real-world data to evaluate the potential for mechanical deformation to predict early postnatal cranial shape changes in humans. We test some aspects of the spatial packing hypothesis applied to the growing brain and masticatory muscles, and their effects on the cranium, with a particular focus on the basicranium and face. A simple finite element model of an early postnatal human cranium, brain and masticatory muscles was created from CT and MRI. Growth of the brain and muscles was simulated using a tissue expansion material. The effect of the expanding soft tissues on the cranium was assessed using geometric morphometrics, comparing the baseline model to simulation results, and also to normative cranial shape data collected from neonatal MRI (0-4 months of age). Findings revealed that cranial shape changes present in the normative sample were consistent with cranial base flexion and were largely allometric (size-linked). Simulation of brain expansion produced broadly similar shape changes of the basicranium with most growth occurring in the cranial vault, while masticatory muscle expansion produced smaller and more widespread changes throughout the cranium. When simulated together, expansion of the masticatory muscles exerted a constraining effect on the results of brain expansion. Our findings that the simple growth simulations were able to mimic biological growth suggest that the relationship between regions of the developing head may be partly structural within the first few months of postnatal ontogeny in humans.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.14211\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14211","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在发育过程中,头部相邻快速生长的组织之间相互作用的重要性已得到承认,但这种对空间的竞争仍未完全理解。发育中的结构可能通过多种机制相互作用,包括直接的遗传程序性生长,并通过可由结构相互作用触发的生理信号介导。在这项研究中,我们旨在研究一种不同但相关的潜在机制,即在人类出生后个体发育过程中,头部邻近结构的简单机械塑性变形对软组织扩张的响应。我们使用计算模型和规范的现实世界数据来评估机械变形的潜力,以预测人类出生后早期颅骨形状的变化。我们测试了空间填充假说的一些方面,应用于大脑和咀嚼肌肉的生长,以及它们对头盖骨的影响,特别关注基本头盖骨和面部。通过CT和MRI建立了早期出生后人类颅骨、大脑和咀嚼肌的简单有限元模型。使用组织膨胀材料模拟大脑和肌肉的生长。使用几何形态计量学评估扩大的软组织对颅骨的影响,将基线模型与模拟结果进行比较,并与新生儿MRI(0-4个月大)收集的规范颅骨形状数据进行比较。结果显示,颅骨形状的变化,目前在规范的样本是一致的颅底屈曲,很大程度上是异速(尺寸相关)。模拟大脑扩张产生的颅底形状变化大致相似,大部分生长发生在颅顶,而咀嚼肌扩张在整个颅底产生较小且更广泛的变化。当一起模拟时,咀嚼肌的扩张对大脑扩张的结果产生了约束作用。我们的研究发现,简单的生长模拟能够模拟生物生长,这表明在人类出生后个体发育的最初几个月里,发育中的头部区域之间的关系可能部分是结构性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational simulation of cranial soft tissue expansion on the cranium during early postnatal growth in humans.

The importance of interactions between neighbouring rapidly growing tissues of the head during development is recognised, yet this competition for space remains incompletely understood. The developing structures likely interact through a variety of mechanisms, including directly genetically programmed growth, and are mediated via physiological signalling that can be triggered by structural interactions. In this study, we aimed to investigate a different but related potential mechanism, that of simple mechanical plastic deformation of neighbouring structures of the head in response to soft tissue expansion during human postnatal ontogeny. We use computational modelling and normative real-world data to evaluate the potential for mechanical deformation to predict early postnatal cranial shape changes in humans. We test some aspects of the spatial packing hypothesis applied to the growing brain and masticatory muscles, and their effects on the cranium, with a particular focus on the basicranium and face. A simple finite element model of an early postnatal human cranium, brain and masticatory muscles was created from CT and MRI. Growth of the brain and muscles was simulated using a tissue expansion material. The effect of the expanding soft tissues on the cranium was assessed using geometric morphometrics, comparing the baseline model to simulation results, and also to normative cranial shape data collected from neonatal MRI (0-4 months of age). Findings revealed that cranial shape changes present in the normative sample were consistent with cranial base flexion and were largely allometric (size-linked). Simulation of brain expansion produced broadly similar shape changes of the basicranium with most growth occurring in the cranial vault, while masticatory muscle expansion produced smaller and more widespread changes throughout the cranium. When simulated together, expansion of the masticatory muscles exerted a constraining effect on the results of brain expansion. Our findings that the simple growth simulations were able to mimic biological growth suggest that the relationship between regions of the developing head may be partly structural within the first few months of postnatal ontogeny in humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Anatomy
Journal of Anatomy 医学-解剖学与形态学
CiteScore
4.80
自引率
8.30%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system. Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract. We particularly welcome submissions in the following areas: Cell biology and tissue architecture Comparative functional morphology Developmental biology Evolutionary developmental biology Evolutionary morphology Functional human anatomy Integrative vertebrate paleontology Methodological innovations in anatomical research Musculoskeletal system Neuroanatomy and neurodegeneration Significant advances in anatomical education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信