Zahra Nashtahosseini, Masoumeh Nejatollahi, Ahmad Fazilat, Elahe Zarif Fakoor, Alireza Emamvirdizadeh, Kamran Bahadori, Niloofar Sadat Hadian, Mohammad Valilo
{"title":"外泌体miRNA与铁下垂之间的串扰:一个叙述性的回顾。","authors":"Zahra Nashtahosseini, Masoumeh Nejatollahi, Ahmad Fazilat, Elahe Zarif Fakoor, Alireza Emamvirdizadeh, Kamran Bahadori, Niloofar Sadat Hadian, Mohammad Valilo","doi":"10.1111/boc.202400077","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>Ferroptosis is a type of cell death that multiple mechanisms and pathways contribute to the positive and negative regulation of it. For example, increased levels of reactive oxygen species (ROS) induce ferroptosis. ferroptosis unlike apoptosis, it is not dependent on caspases, but is dependent on iron. Exosomes are membrane-bound vesicles with a size of about 30 to 150 nm, contain various cellular components, including DNA, RNA, microRNAs (miRNAs), lipids, and proteins, which are genetically similar to their cells of origin. Exosomes are found in all bodily fluids, including blood, saliva, and urine. Cells often release exosomes after their fusion with the cell membrane. They play an important role in immune regulation and cell-cell communication. miRNAs, which are noncoding RNAs with a length of about 18 to 24 nucleotides, are involved in regulating gene expression after transcription. Emerging data suggests that exosomal miRNAs are implicated in various pathophysiological mechanisms of cells, including metastasis, drug resistance, and cell death. In addition, functional studies have indicated that exosomal miRNAs can play a key role in the modulation of cell death by regulating ferroptosis. Therefore, in this review, given the importance of exosomal miRNAs in ferroptosis, we decided to elucidate the relationship between exosomal miRNAs and ferroptosis in various diseases.</p>\n </section>\n </div>","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"117 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The crosstalk between exosomal miRNA and ferroptosis: A narrative review\",\"authors\":\"Zahra Nashtahosseini, Masoumeh Nejatollahi, Ahmad Fazilat, Elahe Zarif Fakoor, Alireza Emamvirdizadeh, Kamran Bahadori, Niloofar Sadat Hadian, Mohammad Valilo\",\"doi\":\"10.1111/boc.202400077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n \\n <p>Ferroptosis is a type of cell death that multiple mechanisms and pathways contribute to the positive and negative regulation of it. For example, increased levels of reactive oxygen species (ROS) induce ferroptosis. ferroptosis unlike apoptosis, it is not dependent on caspases, but is dependent on iron. Exosomes are membrane-bound vesicles with a size of about 30 to 150 nm, contain various cellular components, including DNA, RNA, microRNAs (miRNAs), lipids, and proteins, which are genetically similar to their cells of origin. Exosomes are found in all bodily fluids, including blood, saliva, and urine. Cells often release exosomes after their fusion with the cell membrane. They play an important role in immune regulation and cell-cell communication. miRNAs, which are noncoding RNAs with a length of about 18 to 24 nucleotides, are involved in regulating gene expression after transcription. Emerging data suggests that exosomal miRNAs are implicated in various pathophysiological mechanisms of cells, including metastasis, drug resistance, and cell death. In addition, functional studies have indicated that exosomal miRNAs can play a key role in the modulation of cell death by regulating ferroptosis. Therefore, in this review, given the importance of exosomal miRNAs in ferroptosis, we decided to elucidate the relationship between exosomal miRNAs and ferroptosis in various diseases.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8859,\"journal\":{\"name\":\"Biology of the Cell\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/boc.202400077\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/boc.202400077","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The crosstalk between exosomal miRNA and ferroptosis: A narrative review
Ferroptosis is a type of cell death that multiple mechanisms and pathways contribute to the positive and negative regulation of it. For example, increased levels of reactive oxygen species (ROS) induce ferroptosis. ferroptosis unlike apoptosis, it is not dependent on caspases, but is dependent on iron. Exosomes are membrane-bound vesicles with a size of about 30 to 150 nm, contain various cellular components, including DNA, RNA, microRNAs (miRNAs), lipids, and proteins, which are genetically similar to their cells of origin. Exosomes are found in all bodily fluids, including blood, saliva, and urine. Cells often release exosomes after their fusion with the cell membrane. They play an important role in immune regulation and cell-cell communication. miRNAs, which are noncoding RNAs with a length of about 18 to 24 nucleotides, are involved in regulating gene expression after transcription. Emerging data suggests that exosomal miRNAs are implicated in various pathophysiological mechanisms of cells, including metastasis, drug resistance, and cell death. In addition, functional studies have indicated that exosomal miRNAs can play a key role in the modulation of cell death by regulating ferroptosis. Therefore, in this review, given the importance of exosomal miRNAs in ferroptosis, we decided to elucidate the relationship between exosomal miRNAs and ferroptosis in various diseases.
期刊介绍:
The journal publishes original research articles and reviews on all aspects of cellular, molecular and structural biology, developmental biology, cell physiology and evolution. It will publish articles or reviews contributing to the understanding of the elementary biochemical and biophysical principles of live matter organization from the molecular, cellular and tissues scales and organisms.
This includes contributions directed towards understanding biochemical and biophysical mechanisms, structure-function relationships with respect to basic cell and tissue functions, development, development/evolution relationship, morphogenesis, stem cell biology, cell biology of disease, plant cell biology, as well as contributions directed toward understanding integrated processes at the organelles, cell and tissue levels. Contributions using approaches such as high resolution imaging, live imaging, quantitative cell biology and integrated biology; as well as those using innovative genetic and epigenetic technologies, ex-vivo tissue engineering, cellular, tissue and integrated functional analysis, and quantitative biology and modeling to demonstrate original biological principles are encouraged.