含氨基酸片段槟榔碱衍生物的合成及抗真菌活性研究。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Xianwu Liu, Jianwen Zhang, Zefang Qin, Chengcheng Zhang, Huaxin Liu, Ting Zhou, Lanying Wang, Yanping Luo, Zhigang Zeng
{"title":"含氨基酸片段槟榔碱衍生物的合成及抗真菌活性研究。","authors":"Xianwu Liu, Jianwen Zhang, Zefang Qin, Chengcheng Zhang, Huaxin Liu, Ting Zhou, Lanying Wang, Yanping Luo, Zhigang Zeng","doi":"10.1007/s11030-024-11102-5","DOIUrl":null,"url":null,"abstract":"<p><p>A series of new arecoline derivatives containing amino acid fragments were synthesized, and their fungicidal activities were investigated. All synthesized compounds were characterized by <sup>1</sup>H NMR, <sup>13</sup>CNMR, and HRMS. Preliminary bioactivity assays demonstrated that Compounds 3k, 3n, 3p, 3q, 3r, and 3s exhibited significant antifungal activity against Botryosphaeria cactivora, Botryosphaeria dothidea, and Fusarium pseudograminearum at a concentration of 100 μg/mL. Among them, Compound 3s displayed the highest inhibitory activity against Botryosphaeria dothidea (96.63%), surpassing the commercial fungicide chlorothalonil (91.30%). To explore the underlying mechanisms of the compounds, preliminary investigations into the antifungal mechanism involved molecular docking study, scanning electron microscopy and fluorescence microscopy observations, assessments of membrane permeability, and measurements of malondialdehyde content were carried out, respectively. The findings demonstrated that Compound 3s effectively inhibits fungal hyphal growth by compromising the integrity of the hyphal cell membrane. These results indicate that arecoline derivatives containing amino acid benzyl esters have potential as promising fungicides.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and antifungal activity of arecoline derivatives containing amino acid fragments.\",\"authors\":\"Xianwu Liu, Jianwen Zhang, Zefang Qin, Chengcheng Zhang, Huaxin Liu, Ting Zhou, Lanying Wang, Yanping Luo, Zhigang Zeng\",\"doi\":\"10.1007/s11030-024-11102-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A series of new arecoline derivatives containing amino acid fragments were synthesized, and their fungicidal activities were investigated. All synthesized compounds were characterized by <sup>1</sup>H NMR, <sup>13</sup>CNMR, and HRMS. Preliminary bioactivity assays demonstrated that Compounds 3k, 3n, 3p, 3q, 3r, and 3s exhibited significant antifungal activity against Botryosphaeria cactivora, Botryosphaeria dothidea, and Fusarium pseudograminearum at a concentration of 100 μg/mL. Among them, Compound 3s displayed the highest inhibitory activity against Botryosphaeria dothidea (96.63%), surpassing the commercial fungicide chlorothalonil (91.30%). To explore the underlying mechanisms of the compounds, preliminary investigations into the antifungal mechanism involved molecular docking study, scanning electron microscopy and fluorescence microscopy observations, assessments of membrane permeability, and measurements of malondialdehyde content were carried out, respectively. The findings demonstrated that Compound 3s effectively inhibits fungal hyphal growth by compromising the integrity of the hyphal cell membrane. These results indicate that arecoline derivatives containing amino acid benzyl esters have potential as promising fungicides.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11102-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11102-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

合成了一系列含有氨基酸片段的槟榔碱衍生物,并对其抑菌活性进行了研究。所有合成的化合物均通过1H NMR、13CNMR和HRMS进行了表征。初步生物活性测定表明,化合物3k、3n、3p、3q、3r和3s在浓度为100 μg/mL时对活性氧葡萄球孢菌、dothidea葡萄球孢菌和pseudograminearum镰刀菌具有显著的抗真菌活性。其中化合物3对牛褐球菌的抑制活性最高(96.63%),超过市售杀菌剂百菌清(91.30%)。为了探索这些化合物的潜在机制,对其抗真菌机制进行了初步研究,分别进行了分子对接研究、扫描电镜和荧光显微镜观察、膜通透性评估和丙二醛含量测定。结果表明,化合物3s通过破坏菌丝细胞膜的完整性来有效抑制真菌菌丝的生长。这些结果表明,含有氨基酸苄酯的槟榔碱衍生物有潜力作为有前途的杀菌剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and antifungal activity of arecoline derivatives containing amino acid fragments.

A series of new arecoline derivatives containing amino acid fragments were synthesized, and their fungicidal activities were investigated. All synthesized compounds were characterized by 1H NMR, 13CNMR, and HRMS. Preliminary bioactivity assays demonstrated that Compounds 3k, 3n, 3p, 3q, 3r, and 3s exhibited significant antifungal activity against Botryosphaeria cactivora, Botryosphaeria dothidea, and Fusarium pseudograminearum at a concentration of 100 μg/mL. Among them, Compound 3s displayed the highest inhibitory activity against Botryosphaeria dothidea (96.63%), surpassing the commercial fungicide chlorothalonil (91.30%). To explore the underlying mechanisms of the compounds, preliminary investigations into the antifungal mechanism involved molecular docking study, scanning electron microscopy and fluorescence microscopy observations, assessments of membrane permeability, and measurements of malondialdehyde content were carried out, respectively. The findings demonstrated that Compound 3s effectively inhibits fungal hyphal growth by compromising the integrity of the hyphal cell membrane. These results indicate that arecoline derivatives containing amino acid benzyl esters have potential as promising fungicides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信